Free Response Practice #1 (10 points)

1. Consider the PES spectra shown below, that superimposes the simulated PES spectra for elemental boron and elemental carbon on the same plot. NOTE: x, y, and z are simply labels and do NOT refer to p_x, p_y, and p_z orbitals.

- a. Suggest a reason why the boron and carbon peaks have been paired together in three groups labeled x, y, and z. (1 point)
- b. Explain why the carbon 'x peak' is at a higher energy than the boron 'x peak'. (2 points)
- c. Explain why the boron 'z peak' is half the height of the carbon 'z peak'. (1 point)
- d. If one were to superimpose a third PES plat on the same axes for elemental nitrogen;
 - i. Relative to carbon's 'x peak', where would nitrogen's 'x peak' appear on the x-axis. Explain AND draw and label the peak on the plot above. (2 points)
 - ii. Relative to carbon's 'z peak', what would the height of nitrogen's 'z peak' be? Explain AND draw and label the peak on the plot above. (2 points)
- e. Identify the electrons that are associated with each of the following peaks on the boron plot: (2 points)
 - i. x peak
- ii. y peak
- iii. z peak

(a) The 3 groups represent the 3 occupied sublevels:	
X = 1s, y = 2s, z = 2p	
, 2	

(b) C has more pt than B, so its nucleus exerts a greater attractive force on its e-, thus it requires more energy to remove an e- from C than B.

(c) C has 2 e- at the 2p sublevel whereas B has only I hence
B's 2p peak ("z") is half the height (since peak height represents
of e-)
(d) (i) N's x peak would appear at a higher energy than C's x peak,
ble N has I more pt than C, so its e are more attracted to its
nucleus + would require more energy to remove.
7 00
(ii) Peak height represents # of e, + Since N has 3e in the 2p Sublevel (compared to C's 2e), the Nz peak should be 150%
Sublevel (compared to C's 2 e-), the N z peak should be 150%
of the height of C's z peak.
$e.)$ i) \times peak = 1s
ii) y peak = 2s
iii) z peak = 2p
111) 2 POING