Part II: Identify the atoms by examining their arrangement of electrons.

Orbital Diagram or Electron Configuration	# of Total Electrons	# of Valence Electrons	Element
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	6	oxygen
[Ne] 3s ² 3p ²	14	4	Silicon
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁴	24	2	chronium
[Ar] 4s ² 3d ¹⁰ 4p ⁵	35	7	bromine
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ⁶ 6s ² 4f ¹⁴ 5d ¹⁰ 6p ³	83	5	bismuth

Part III: Matching!

C.
$$\begin{array}{ccc}
\uparrow\downarrow & \uparrow\downarrow \\
\hline
1s & 2s & \hline
\end{array}$$

D.
$$\begin{array}{c|c}
\uparrow\downarrow & \uparrow\downarrow \\
\hline
15 & 25 \\
\hline
\end{array}$$

8 1. This orbital notation shows an element with nine total electrons.

2. This orbital notation shows an element with three <u>valence</u> electrons.

 \bigcirc 3. This orbital notation shows an element with five <u>total</u> electrons.

<u>B</u> 4. This orbital notation shows an element with the Lewis dot structure shown below.

Part IV: Multiple Choice

- I. Energy is emitted.
- II. Energy is absorbed.
- III. The electron is now in its ground state.

- a. I only
- b. II only
- (c.) I and III only
 - d. II and III only

2. What is the correct noble gas notation for the cation found within the compound AlBr₃? \Rightarrow \triangle 1

- a. [Ne]3s²3p¹
- c. [Ar]4s²4p⁶
- (b.) [He]2s²2p⁶
- d. [Ar]3s²3p¹

Cr2+

d. Zn²⁺

3	Which of the	following species ha	s exactly two unn	aired electrons in	the ground state?
	WITHCH OF THE	TOTIONALLE SPECIES HO	is exactly two unp	an ca cicca ons in	Cite Products

a.	Mg ²⁺	(b.) Ti ²⁺	c.
			11	
		45	3d	

X I.	Isoelectronic with a noble gas.		111
✓ II.	An empty 4s orbital.	45	
✓III.	Partially filled 3d orbitals.	73	3d
✓ IV.	The presence of unpaired electrons.		

- a. Il only b. Il and III only c. Il and IV only d. II, III and IV only
- 5. What is the correct electron configuration for the negatively charged anion found within the compound magnesium oxide? $M \alpha O \Rightarrow O^{2-}$

a.
$$1s^22s^22p^4$$
 c. $1s^22s^22p^63s^2$

- 6. Which of the following, in their ground state, has exactly four unpaired electrons?

 I. Fe $1 \frac{1}{3d} = \frac{1}{3d} =$
 - a. I only b. III only c. II and IV only d. I and II only

7. Many of the unique properties of tin are due to the electron arrangement within the atom. What is the ground state electron configuration of tin?

- a. [Kr] $5s^25p^2$ c. [Kr] $5s^25d^{10}5p^2$ b. [Kr] $5s^24d^{10}5p^2$ d. [Kr] $5s^24d^{10}4f^{14}5p^2$
- 8. Which of the following species has exactly three unpaired electrons in the ground state?

a.
$$Fe^{2+}$$
 b. P^{3-} c. Al^{3+} d.) V^{2+}