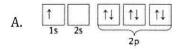
Isoelectronic atoms and ions: the "iso" in "isoelectronic" means " Same ", so isoelectronic atoms and ions have the same number of electronic.

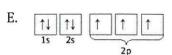
Example:

- Write the electron configuration for S²: $15^{2}25^{2}2p^{6}35^{2}3p^{6}$
- What noble gas is isoelectronic to S^2 ? $\bigwedge_{\mathcal{K}}$
- List other atoms or ions that are isoelectronic to the S²-ion: P^3 , C1, K^4 , Cq^2

Yum, atoms! Let's practice.


Part I: The counting of electrons.

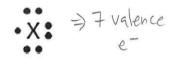
	Orbital Notation			
Si	$\frac{1\nu}{1s} \frac{1\nu}{2s} \frac{1\nu}{2p} \frac{1\nu}{3s} \frac{1}{3p} \frac{1}{3p}$			
	Electron Configuration	Noble Gas Configuration		
	15 ² 25 ² 2p ⁶ 35 ² 3p ²	TNe13s23p2		
	Orbital Notation	1		
As	$\frac{11}{15} \frac{11}{25} \frac{11}{2p} \frac{11}{35} \frac{11}{3p} \frac{11}{45} \frac{11}{3d} \frac{11}{11} \frac{11}{11}$	1 1 1 4p		
	Electron Configuration	Noble Gas Configuration		
	1522522p63523p64523d104p3	[Ar] 4s2 3d10 4p3		
	Orbital Notation			
CI ⁻	$\frac{11}{15} \frac{11}{25} \frac{11}{2p} \frac{11}{35} \frac{11}{3p} \frac{11}{3p}$			
	Electron Configuration	Noble Gas Configuration		
	122525 569325 360	[Ne]3s23p6		
Fe ³⁺	Orbital Notation			
	$\frac{11}{15} \frac{11}{25} \frac{11}{2p} \frac{11}{35} \frac{11}{3p} \frac{11}{45} \frac{1}{1}$	$\frac{1}{3\lambda} \frac{1}{3\lambda}$		
	Electron Configuration	Noble Gas Configuration		
	1522522p63523p645 3d5	[Ar] 3d5		


Part II: Identify the atoms by examining their arrangement of electrons.

Orbital Diagram or Electron Configuration	# of Total Electrons	# of Valence Electrons	Element
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	6	oxygen
[Ne] 3s ² 3p ²	14	4	Silicon
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ⁴	24	2	Chronium
[Ar] 4s ² 3d ¹⁰ 4p ⁵	35	7	bromine
1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁶ 5s ² 4d ¹⁰ 5p ⁶ 6s ² 4f ¹⁴ 5d ¹⁰ 6p ³	83	5	bismuth

Part III: Matching!

C.
$$\begin{array}{c|c}
\uparrow\downarrow & \uparrow\downarrow \\
\hline
1s & 2s \\
\hline
\end{array}$$



8 1. This orbital notation shows an element with nine total electrons.

2. This orbital notation shows an element with three <u>valence</u> electrons.

2. This orbital notation shows an element with five total electrons.

<u>B</u> 4. This orbital notation shows an element with the Lewis dot structure shown below.

Part IV: Multiple Choice

- I. Energy is emitted.
- II. Energy is absorbed.
- III. The electron is now in its ground state.

- a. I only
- b. II only
- c.\ I and III only
- d. II and III only

2. What is the correct noble gas notation for the cation found within the compound AIBr₃? \Rightarrow \triangle \ $^{3+}$

- a. [Ne]3s²3p¹
- c. [Ar]4s²4p⁶
- (b.) [He]2s²2p⁶
- d. [Ar]3s²3p¹