Acids and Bases: Equilibrium that Bites Back!

Types of Acids and Bases

	Arrhenius	BrønstedLowry	Notes
Acids	H ⁺ donor	H+ donor	Same!
Bases	OH donor	H ⁺ acceptor	different 0

Note: H⁺ ions are so reactive they cannot exist in water 9996. Instead, they react with water molecules to produce complex ions, mainly **hydronium ion**, 130. Be careful: H⁺ and H₃0⁺ are often used interchangeably!

$$H_{+} + : \ddot{O}: H \longrightarrow \begin{bmatrix} H: \ddot{O}: H \end{bmatrix}_{+}$$

Chemists prefer the **Brønsted–Lowry** definition, because it Illustrates the <u>reversionity</u> of acid/base reactions as a proton exchange (mmm, equilibrium). To examine why, let's look at how the Bronsted-Lowry base, NH₃ (ammonia) reacts with water:

$$NH_3 + H_2O \Leftrightarrow NH_4^+ + OH^-$$

<u>Note</u>: when a Bronsted-Lowry base reacts with water, OH^- is still produced! But it comes from what's left of the water molecule *after* NH₃ removes a proton (H^+).

You MUST know (i.e. memorize): NH3 is a Weak Brønsted-Lowry base!

Terms to Know

monoprotic acids: donate A^+ (ex. $HC_2H_3O_2$)

diprotic acids: donate A^+ 's (ex. $H_2C_2O_4$)

polyprotic acids: donate many A^+ 's (ex. A_3PO_4)

But be careful!

Acids only donate ONE PROTON AT A TIME!

*Don't forget the bases!

 \rightarrow polyprotic bases: <u>accept</u> more than one H⁺; anions with -2 or -3 charge (ex. PO₄³⁺; HPO₄²⁻) <u>Amphoteric or amphiprotic</u>: substances can act as <u>either</u> acids or bases (ex. H₂O, HCO₃⁻, and H₂PO₄²⁻)

• Example 1: Water as a base, accepting H⁺ from HCl.

Example 2: Water as an <u>acid</u>, donating H⁺ to NH₃.

Conjugate Acid-Base Pairs

In a Brønsted—Lowry acid—base reaction, the original base becomes an acid in the reverse reaction, and the original acid becomes a base in the reverse process.

- Each reactant and the product it becomes is called a <u>Conjugate</u> pair.
- Conjugate pairs differ by the presence of <u>1</u> H⁺ ion!

Note: By definition, the acid and base are the reactants, and the <u>Conjugates</u> of each are the products.

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^ B A CA CB$$

Conjugate acid-base pair? NH_3 and NH_4^+
or H_2O and OH^-

Acid	Conjugate Base	Base	Conjugate Acid
HCI	CI-	NH3	NH ₄ ⁺
HPO₄ [⊗] 2-	PO43-	HPO4 ^{® 2-}	H2P04
H2SO4	HSO ₄	OH-	H₂O

Acid Nomenclature Review

<u>Binary acids</u> contain two different elements: hydrogen and one of the more electronegative elements. Aqueous solutions of these compounds are known by the acid names.

	RULES:		EXAMPLES	<u>5:</u>
1.	Name begins with prefix hydro-	1.	HBr	hydrobromic acid
	Root of name of second element follows this prefix	2.	H ₃ N	hydronitric acid

3. Name ends with suffix -ic. Add the word acid.

Oxyacids are acid compounds of hydrogen, oxygen, and a third element. Usually the oxyacid is one or more hydrogen followed by a polyatomic anion.

RULES:

- 1. NO PREFIX > no hydro!
- 2. Look at the polyatomic anion:
 - a. if name ends in <u>ate</u> then the suffix is changed to <u>ic</u>.
 - b. if name ends in ite then the suffix is changed to ous.
- 3. Add the word acid at the end.
- 4. NO HYDRO prefix!
- 5. <u>Hint</u>: Watch out for the dread disease called *Ate-ic ite-ous* ©

EXAMPLES:

- 1. H₂SO₄ Sulfuric Acid
- 2. H₂SO₃ Sulfurous Acid

Table: Conventions for Naming Oxyacids

Relationship	General name	Example name	Example formula	
one more oxygen atom than (root)ic	per(root)ic acid	perchloric acid	HClO ₄	
	(root)ic acid	chloric acid	HClO ₃	
one less oxygen atom than (root)ic	(root)ous acid	chlorous acid	HClO ₂	
two less oxygen atoms than (root)ic	hypo(root)ous acid	hypochlorous acid	HCIO	

Time to Practice!

1.	H_2CO_3	carbonic acid	5. nitric acid HNO ₃
2.	HNO ₂	nitrous acid	6. phosphoric acid H ₃ PO ₄
3.	HCl _	hydrochloric acid	7. hydroiodic acid HI
4.	HBrO ₂	bromous gcid	8. sulfurous acid $H_2 SO_3$