- 3. Nitrogen monoxide, NO(g), can undergo further reactions to produce acids such as HNO₂, a weak acid with a K_a of 4.0×10^{-4} and a pK_a of 3.40.
 - a. A student is asked to make a buffer solution with a pH of 3.40 by using 0.100 M HNO₂(aq) and 0.100 M NaOH(aq).
 - i. Explain why the addition of 0.100 M NaOH(aq) to 0.100 M HNO₂(aq) can result in the formation of a buffer solution. Include the net ionic equation for the reaction that occurs when the student adds the NaOH(aq) to the HNO₂(aq). (2 points)
 - ii. Determine the volume, in mL, of 0.100 M NaOH(aq) the student should add to 100. mL of 0.100 M HNO₂(aq). to make a buffer solution with a pH of 3.40. Justify your answer. (2 points)
 - b. A second student makes a buffer by dissolving 0.100 mol of NaNO₂(s) in 0.100 M HNO₂(aq). Which is more resistant to changes in pH when a strong acid or a strong base is added, the buffer made by the second student or the buffer made by the first student in part (c)? Justify your answer. (1 point)

a.) (i) Adding NgOH to HNOz, hentralizing some of the acid to
create NOz. As long as moles of added NaOH are less the
the initial moles of HNOz, after the neutralization the mixture
will contain both a weak acid, HNDz, and its conjugate base, NDz,
which is a Luffer Solution.
HNO2(ag) + OH (ag) > NO2 (ag) + H2O(e)

(ii) Since the pKa (HNOz) = 3.40, when EHNOz J = ENOz J the pH of the buffer sol'n will be 3.40 (pH = pKa). Thus, half of the HNOz heeds to be converted to conjugate base: the student should add 50.0 mL of 0.100 M NaDH.

to changes in pH blc it contains a higher concentration of HNO2 and NO2 to react with added Ht or OH.