Will a Precipitate Form? A Task for K vs Q!

Precipitation occurs when the concentrations of ions is greater than the solubility of the ionic compound.

Compare the value of Q with given K_{sp} to determine if a precipitate will form!

K > Q	K = Q	K < Q
Unsaturated Solution	Saturated Solution	Saturated Solution with extra
System will shift right to reach equilibrium $AgCl(s) \rightleftarrows Ag^{+}(aq) + Cl^{-}(aq)$	At equilibrium $AgCl(s) \rightleftarrows Ag^{+}(aq) + Cl^{-}(aq)$	System will shift left to reach equilibrium $AgCl(s) \rightleftarrows Ag^{+}(aq) + Cl^{-}(aq)$
More solid will dissolve until K = Q.	Solid will both dissolve and precipitate at the same rate.	More solid will precipitate until K = Q.
no precipitate	maybe precipitate	yes precipitate

Important Ideas to Note:

after a period of time

- 1. If any solid is present, the solution is at equilibrium (a Saturated solution)
- 2. Ion concentration [ions], is independent of volume when at equilibrium (for instance, in a Sqturated solution).
- 3. If ions are present that could form multiple salts, the solid with the smallest molar solubility will form.

Solubility Equilibrium Translation Guide

- 1. Solubility product constant = K_{sp} (aka the equilibrium constant for solubility)
- 2. Molar solubility = x from RICE table (aka how many moles of a solid will dissolve in 1.0 L, units = M = mol/L)
- 3. Saturated = equilibrium (aka a solution has dissolved as many ions as can fit, any extra will precipitate)

Let's Practice!

- 1. A chemist makes a 2.0 L saturated solution of Ba₃(PO₄)₂ solution, which has a $K_{sp} = 6.0 \times 10^{-39}$.
 - a. What is the concentration of Ba2+ ions in solution?

$$K_{sp} = [B_q^{2+}]^3 [PO_4^{2-}]^2 = (3x)^3 (2x)^2 = |08x^5 = 6.0 \text{ E}-39$$

 $\Rightarrow x = \sqrt[5]{\frac{6.0 \text{ E}-39}{108}} = 8.9 \text{ E}-9 \text{ M}$

$$[B_9^{2+}] = 3x = 3(8.9E-9) = [2.7 \times 10^{-8} \text{ M}]$$

b. After two days of sitting on the counter, some liquid has evaporated from the solution. Did [Ba²⁺] increase, decrease, or remain the same? Justify your answer.

Remain the same! Although less liquid is present, the Sol'n was already saturated, thus [Ba2+] cannot increase.

c. The chemist adds 3.00 g of solid $(NH_4)_3PO_4$ to the original saturated solution of $Ba_3(PO_4)_2$. Did $[Ba^{2+}]$ increase, decrease, or remain the same? Justify your answer.

Decrease, blc adding a common ion, PO4, to Sol'n will increase [products], to so the rxn will shift left to re-establish equilibrium. This means more Ba3(PO4)2(s) will form, removing some Ba2t from sol'n.

2. A solution containing lead (II) nitrate is mixed with one containing sodium bromide to form a solution that is 0.0150 M in Pb(NO₃)₃ and 0.00350 M NaBr. Does a precipitate form in this newly mixed solution? (K_{sp} of PbBr₂ = 4.67×10^{-6})

$$Q = [Pb^{2+}][Br^{-}]^{2} = (0.0150)(0.00350)^{2} = 1.84 \times 10^{-7}$$

K>Q K>Q So

K > Q so no precipitate will form

4.67 E-6 > 1.84 E-7

3. The K_{sp} value for lead (II) bromide, PbBr₂, is 4.6×10^{-6} at 25°C. What is the maximum mass, in grams, of PbBr₂ that can dissolve in 1.50 L of water?

$$K_{Sp} = [Pb^{2+}][Br^{-}]^{2} = \times (2\times)^{2} = 4x^{3} = 4.6E - 6$$

$$X = \sqrt[3]{\frac{4.6E-6}{4}} = 0.01048 \text{ M PbBr}_{2} \times 1.50 \text{ L} = 0.016 \text{ mol} \times \frac{3679 \text{ PbBr}_{2}}{1 \text{ mol}}$$