Now you try!

1. If the K_p for the following reaction is 2.4×10^{-9} and the initial concentration of CO_2 is 2.00 atm, what are the partial pressures of the substances at equilibrium?

$$C_{(S)} + CO_{2(g)} \stackrel{?}{=} 2CO_{(g)}$$

$$\begin{cases}
2.00 & \emptyset \\
-x & +2x \\
2.00-x & 2x
\end{cases}$$

$$\Rightarrow x = \sqrt{\frac{(2.00)(2.4E-9)}{4}} = \frac{3.46 \times 10^{-5}}{2.00} \times 100^{-5} \text{ atm}$$

$$\begin{cases}
P_{CO_2} = 2.4E-9 \\
-x & +2x \\
2.00-x & 2.0
\end{cases}$$

$$\Rightarrow X = \sqrt{\frac{(2.00)(2.4E-9)}{4}} = \frac{3.46 \times 10^{-5}}{2.00} \times 100^{-5} \text{ atm}$$

$$\begin{cases}
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm} \\
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm}
\end{cases}$$

$$\begin{cases}
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm} \\
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm}
\end{cases}$$

$$\begin{cases}
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm} \\
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm}
\end{cases}$$

$$\begin{cases}
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm} \\
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm}
\end{cases}$$

$$\begin{cases}
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm} \\
P_{CO_2} = 2.00 \times 10^{-5} \text{ atm}
\end{cases}$$

2. A gas, XY(g), decomposes according to the following reaction: $2 \text{ XY(g)} \rightleftharpoons X_2(g) + Y_2(g)$, $K_p = 230$. A sample of each of the gases is places in a previously evacuated container, and the initial partial pressures of the gases are shown in the table below:

Gas	Initial Partial Pressure (atm)
XY	0.010
X_2	0.20
Y ₂	2.0

If the temperature of the reaction mixture is held constant, in which direction will the reaction proceed? Explain.

$$Q_{p} = \frac{P_{x_{2}} P_{y_{2}}}{(P_{xy})^{2}} = \frac{(0.20)(2.0)}{(0.010)^{2}} = 4000 > 230$$

3. For the reaction $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$, 1.0 mg of $N_2O_4(g)$ is placed in a 10.0 L reaction vessel at a constant temperature. $K_c = 4.0 \times 10^{-7}$ for this temperature. Find the equilibrium concentrations.

Multiple Choice Practice!

4. Here is a general reaction with a K value of 16: $A(aq) + B(aq) \rightleftharpoons 2 C(aq)$. Initially, [A] = [B] = 2.0 M. Solve for the equilibrium concentration of each substance.

a.
$$[A] = [B] = 0.67 \text{ M}, [C] = 1.3 \text{ M}$$

$$(c.)$$
 [A] = [B] = 0.67 M, [C] = 2.7 M

d.
$$[A] = [B] = 0.50 M, [C] = 3.0 M$$

A + B = 2C
Z = 2 Ø
$$K = \frac{ECJ^2}{2-x} = \frac{(2x)^2}{(2-x)^2} = \frac{16}{2-x} = \frac{2x}{2-x} = \frac{2x}{2$$

5. Consider the following equilibrium: $Cl_2(g) + 2 NO(g) \rightleftharpoons 2 NOCl(g)$. Initially, the reaction was started by adding 10.0 *M* NOCl gas to a reaction vessel. At equilibrium, [NO] = 2.0 *M*. What is the value of K_c ?

6. The reaction below came to equilibrium at a temperature of 100°C. At equilibrium the partial pressure due to NOBr was 4 atm, the partial pressure due to NO was 4 atm, and the partial pressure due to Br₂ was 2 atm. What is the equilibrium constant, K_p, for this reaction at 100°C?

$$2 \text{ NOBr(g)} \rightleftharpoons 2 \text{ NO(g)} + \text{Br}_2(g)$$

- a. 1/4

$$K_{p} = \frac{(P_{No})^{2}(P_{Br_{2}})}{(P_{NOBr})^{2}} = \frac{(4)^{2}(2)}{(4)^{2}} = 2$$

- 7. Consider the following: $2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$. Initially, 0.030 mol SO_2 and 0.030 mol O_2 are placed into a 1.0 L container. At equilibrium, there is 0.020 mol O_2 present. What is the $[SO_2]$ at equilibrium?
 - 0.010 mol/L
- b. 0.020 mol/L
- c. 0.030 mol/L
- d. 0.040 mol/L

 \Rightarrow $\times = 0.010$ Use the information below to answer #8-10.

Reaction 1:

 $NOBr(g) \rightleftharpoons NO(g) + \frac{1}{2} Br_2(g)$

 $K_c = 3.4 \times 10^{-2}$ K < Q

Reaction 2:

 $2 \text{ NOCl(g)} \rightleftharpoons 2 \text{ NO(g)} + \text{Cl}_2(g)$

Reaction 3:

Reaction 4:

 $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$

 $K_c = 4.2 \times 10^2$ k > Q

- 8. For a reaction involving nitrogen monoxide inside a sealed flask, the value for the reaction quotient (Q) was found to be 1.1 x 10² at a given point. If, after this point, the amount of NO gas in the flask increased, which reaction is most likely taking place in the flask?
 - a. reaction 1
- b. reaction 2
- c. reaction 3
- (d.) reaction 4
- 9. Which of these reactions proceeds at the slowest rate?
 - a. reaction 1

a. I only

- b. reaction 2
- c. reaction 3
- cannot be determined
- Same! =>n 10. For reaction #3, equimolar amounts of N₂ gas and H₂O gas are allowed to come to equilibrium in a sealed reaction vessel. Which of the following must be true at equilibrium? 2 NO + 2 Hz = N, + 2 H, O
 - $[N_2]$ must be less than $[H_2O]$. \times ١.

 $[N_2]$ must be greater than $[H_2O]$.

[NO] must be greater than $[H_2]$. \times

- II only
- c. I and III
- d. II and III