Manipulating Reactions and the Effect on K

1. Stoichiometric Coefficients: If you multiply the coefficients in the equation by a factor, the equilibrium constant to the same factor to get the equilibrium constant for the reaction.

$$2X + Y \leftrightarrow 2Z$$
 K
 $X + \frac{1}{2}Y \leftrightarrow Z$ $K^{\frac{1}{2}}$

$$4X + 2Y \leftrightarrow 4Z$$
 K^2

2. Reversing Equations: When the equation is written in <u>Veverse</u>, take the <u>Veciprocal</u> of K to get the equilibrium constant for the reaction.

$$2X + Y \leftrightarrow 2Z \qquad K$$

$$2Z \leftrightarrow 2X + Y \qquad \frac{1}{K}$$

3. Adding Equations: If you add two or more chemical equations to get the overall reaction (like in Hess's Law), multiply the respective K's to get the equilibrium constant for the reaction.

$$K_{total} = K_1 \times K_2 \times K_3 \dots$$

Let's Practice!

1. The Haber Process is a famous industrial method for producing ammonia from nitrogen and hydrogen gases:

$$N_2(g) + 3 \; H_2(g) \rightleftharpoons 2 \; NH_3(g) \qquad \quad K_c = 3.8 \; x \; 10^4 \; \; \text{at } 127^\circ C$$

a. Calculate the value of the equilibrium constant, K_c , at 127°C for the reaction: 2 NH₃(g) \rightleftharpoons N₂(g) + 3 H₂(g)

$$K' = \frac{1}{K} = \frac{1}{3.8E4} = \left[2.6 \times 10^{-5}\right]$$

b. Calculate the value of K_c at 127°C for this reaction: ½ $N_2(g) + 3/2$ $H_2(g) \rightleftharpoons NH_3(g)$ \times $\frac{1}{2}$

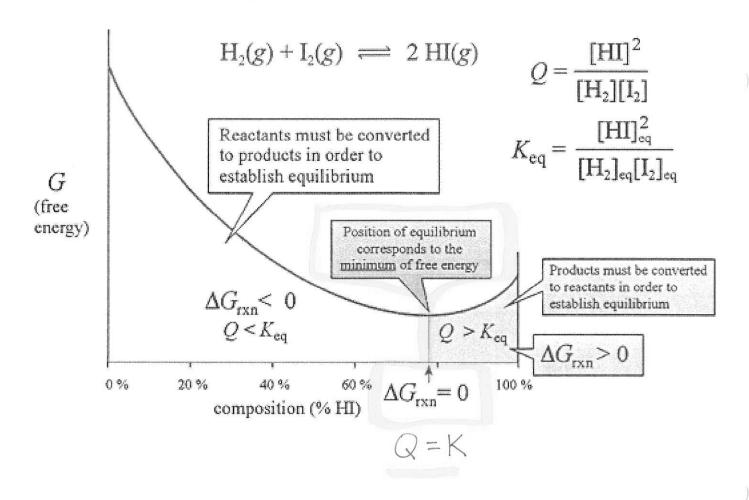
$$K' = K'^2 = \sqrt{3.8E4} = 190$$

c. Calculate the value of K_c at 127°C for this reaction: $6 \text{ NH}_3(g) \rightleftharpoons 3 \text{ N}_2(g) + 9 \text{ H}_2(g)$ VeverSe \times 3

$$K' = \frac{1}{K^3} = \frac{1}{(3.8 \text{ E}^4)^3} = [1.8 \times 10^{-14}]$$

THE REACTION QUOTIENT, Q: When you need to know the answer to the question, "Is the system at equilibrium?"

For the general reaction: $aA + bB \rightleftharpoons cC + dD$


$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \text{ or } \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$$

Reminder:

- Q has the appearance of K (same exact ratio!)
- But... Q can be calculated at <u>any</u> point in the reaction progress, not only at equilibrium!

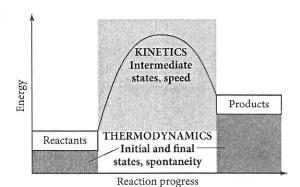
What does Q mean?

- 1. If $K \ge Q$, system not at equilibrium: forward reaction is favored (shift right) to make Q = K.
- 2. If $K \stackrel{\sim}{=} Q$, the system is at equilibrium.
- 3. If $K \leq Q$, system not at equilibrium: reverse reaction is favored (shift left) to make Q = K.

The Kinetics of Equilbrium

- 1. If equilibrium is approached from the left (starting with reactants), K > Q, $-\Delta G$
 - a. the rate of the <u>forward</u> reaction <u>\lambda</u> to a constant, non-zero rate (i.e. it slows down over time until equilibrium is reached).
 - b. the rate of the reverse reaction \uparrow to a constant, non-zero rate (i.e. it speeds up over time until equilibrium is reached).
- 2. If equilibrium is approached from the right (starting with $\underline{products}$), $K < Q + \Delta G$ a. the rate of the $\underline{forward}$ reaction $\underline{\uparrow}$ to a constant, non-zero rate (i.e. it speeds up over time until
 - equilibrium is reached).
 - b. the rate of the <u>reverse</u> reaction $\underline{\hspace{1cm}}$ to a constant, non-zero rate (i.e. it slows down over time until equilibrium is reached).
- 3. Time required to reach equilibrium does $\frac{NoT}{}$ depend on the equilibrium constant, K!
- 4. Regardless of initial conditions, at a given <u>temperature</u> a reaction will reach equilibrium with the same ratio of products to reactants.

In Summary


Current conditions	K > Q	$K \approx Q$	K < Q
change needed for system to reach equilibrium	shift right (make more products)	already at equilibrium	shift left (make more reactants
reaction rates	forward > reverse reaction rate (until equilibrium reached)	forward ≈ reverse reaction rate	forward < reverse reaction rate (until equilibrium reached)

Thermodynamics: pand K! (blc AG = -RTLnK)

- Will a reaction happen spontaneously?
- Determined by ΔG (i.e., combo of ΔH and ΔS)

Kinetics:

- How fast will a reaction happen?
- Determined by activation energy, Ea, and temperature

Equilibrium vs Kinetics: k vs K!

Equilibrium	Kinetics	
K = equilibrium constant	k = rate constant lats with	

What we can determine about k using K:

Relative rates of forward and reverse reactions (by comparing K vs Q)

What we can't determine about k using K:

Absolute rates of forward and reverse reactions

You CANNOT compare the rate of one reaction to another by comparing their K values!

