1.

$$2A(g) \rightleftharpoons 2 B(g) + C(g)$$
 $K = 1.6 \times 10^4$

Two moles of Gas A are placed into a closed system where the temperature is held constant at 270 K and allowed to reach equilibrium as represented by the chemical reaction shown above. After 15 minutes at equilibrium, additional Gas B is injected into the reaction vessel. Which of the following best describes the behavior of the equilibrium mixture in response to the addition of Gas B?

- (A) The concentration of Gas A increases.
 - B The concentration of Gas C increases.
 - C The value of the equilibrium constant increases.
 - D There is no observable effect since the equilibrium was already established.
- 2. In which of the following systems would the number of moles of the substances present at equilibrium NOT be shifted by a change in the volume of the system at constant temperature?

A
$$CO(g) + NO(g) \rightleftharpoons CO_2(g) + \frac{1}{2} N_2(g) \Delta n = -0.5$$

B
$$N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$$
 $\triangle h = -2$

(D)
$$NO(g) + O_3(g) \rightleftharpoons NO_2(g) + O_2(g)$$
 $\triangle_h = \emptyset$

3.

$$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$$

The chemical equation for the formation of hydrogen chloride gas from its elements is shown above. Given that the equilibrium constant for the reaction above is K_{pr} . Which of the following best represents the equilibrium constant for the reaction

$$HCl(g) \rightleftharpoons \frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g)$$
? reverse AND $\times \frac{1}{2}$

 $\mathbf{A} = \frac{1}{K_{-}^2}$

$$\bigcirc$$
 $\frac{1}{\sqrt{K}}$

 $\mathbf{B} = K_{\mathbf{B}}^2$

$$\mathbf{D} = \sqrt{\mathbb{K}_p}$$

$$CaCl_2(s) + 2H_2O(g) \rightleftharpoons CaCl_2 \cdot 2H_2O(s)$$

Solid calcium chloride reacts with water as shown above. Which of the following is the correct equilibrium expression for this reaction?

$$\mathbf{A} \quad K = \frac{[CaCl_2 \cdot 2H_2O]}{[CaCl_2][H_2O]}$$

$$\mathbf{C} \quad \mathcal{K} = \frac{1}{2[H_2 O]}$$

$$\mathbf{B} \quad \mathcal{K} = \frac{1}{[H_2 O]^2}$$

D
$$K = [H_2 O]^2$$

5. A gaseous reaction occurs and comes to equilibrium, as shown below. Which of the following changes to the system will serve to increase the number of moles of I_2 present at equilibrium? 3 mol (g) < 3 mol (g) $2 HI(g) + CI_2(g) \leftrightarrow 2 HCI(g) + I_2(g) + energy$

$$2 \text{ HI(g)} + \text{Cl}_2(g) \leftrightarrow 2 \text{ HCl(g)} + \text{I}_2(g) + \text{energy}$$

- a. Increasing the volume at constant temperature
- b. Decreasing the volume at constant temperature
- c. Increasing the temperature at constant volume
- d.) Decreasing the temperature at constant volume

$$reve(Se, X2)$$

 $(CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g) \quad K_c = 14 \implies K' = \frac{1}{K^2} = \frac{1}{1.4^2}$
 $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g) \quad K_c = 14.5$

6. Given the above information, what would be the equilibrium constant for the reaction below?

$$3 \text{ CO } (g) + 2 \text{ H}_2\text{O} (g) \Rightarrow 2 \text{ CO}_2 (g) + \text{CH}_3\text{OH} (g)$$
 $K_{\text{head}} = K' \times K_2$

(A) (2)(1.4)(14.5) (C) $\frac{14.5}{(1.4)^2} = \frac{14.5}{1.4^2}$

(B) $\frac{(1.4)(14.5)}{2}$ (D) $14.5 - 1.4^2$

7. In which of the following ways could the reaction below be manipulated to create more product?

$$PCl_3(g) + Cl_2(g) \leftrightarrow PCl_5(g) + heat \Delta H = -92.5 \text{ kJ/mol}_{con}$$

- Decreasing the concentration of PCl₃
- **b.)** Increasing the pressure
 - Increasing the temperature
 - d. None of the above

8. A sample of H₂S gas is placed in an evacuated, sealed container and heated until the following decomposition $K_c = 1.0 \times 10^{-6}$ $2 H_2S(g) \rightarrow 2 H_2(g) + S_2(g)$ reaction occurs at 1000 K:

Which option best describes what will immediately occur to the reaction rates if the pressure on the system is increased after it has reached equilibrium? $\land P \Rightarrow \text{shift left}$

- a. The rate of both the forward and the reverse reactions will increase.
- b. The rate of the forward reaction will increase will the rate of the reverse reaction will decrease.
- The rate of the forward reaction will decrease will the rate of the reverse reaction will increase.
- d. Neither the rate of the forward nor reverse reactions will change.

$$Br_2(g) + I_2(g) \leftrightarrow 2 IBr(g)$$

9. At 150°C, the equilibrium constant, K_c, for the reaction shown above has a value of 300. The reaction was allowed to reach equilibrium in a sealed container and the partial pressure due to IBr(g) was found to be 3 atm. Which of the following could be the partial pressures due to Br₂(g) and I₂(g) in the container?

	Br ₂ (g)	1 ₂ (g)	[IBr]2	
a.	0.1 atm	0.3 atm	K =	į
b.	0.3 atm	1 atm	C [By][I,]	
c.	1 atm	1 atm	•	

10. Consider the following equilibrium:

3 atm

d. 1 atm

Consider the following equilibrium:
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 $K_{eq} = 50.0$
What is the value K_{eq} for the reaction rewritten as: $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ $K_{eq} = ?$

(b.) 0.0200 c. 25.0

$$K_{\text{new}} = \frac{1}{K} = \frac{1}{50} = \frac{1}{5} \times 10^{-1} = 0.2E - 1 = 0.02$$

11. Consider the following equilibrium: $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

An equilibrium mixture contains 4.0×10^{-2} mol N₂O₄ and 1.5×10^{-2} mol NO₂ in a 1.0 L flask. What is the value of Keg?

(a) 5.6×10^{-3} b. 3.8×10^{-1} c. 7.5×10^{-1} d. 1.8×10^{2}

$$K = \frac{ENO_2J^2}{EN_2O_4J} = \frac{(1.5E-2)^2}{4.0E-2} \approx \frac{2E-4}{4E-2} = 0.5E-2 = 5E-3$$

12. Consider the following equilibrium: $Cl_2(g) + 2 NO(g) \rightleftharpoons 2 NOCl(g)$ $K_{eq} = 5.0$

At equilibrium, $[Cl_2] = 1.0 \text{ M}$ and [NO] = 2.0 M. What is the [NOCl] at equilibrium?

a. 0.12 M b. 0.89 M 10. M $K = \frac{[NOCIJ^2]}{[CIJ[NOJ^2]} = \frac{x^2}{(1)(2)^2} = 5 = \frac{x^2}{4} \Rightarrow x = \sqrt{20}$