Question 5: Short Answer

(a) For the correct calculated value:

Accept one of the following:

- $k=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{1.67 \mathrm{hr}}=0.415 \mathrm{hr}^{-1}$
- $k=\frac{\ln [\mathrm{A}]_{0}-\ln [\mathrm{A}]_{t}}{t}=\frac{\ln (0.160)-\ln (0.0800)}{1.67 \mathrm{hr}}=0.415 \mathrm{hr}^{-1}$
- $k=\frac{\ln [\mathrm{A}]_{0}-\ln [\mathrm{A}]_{t}}{t}=\frac{\ln (0.160)-\ln (0.0400)}{3.33 \mathrm{hr}}=0.416 \mathrm{hr}^{-1}$
- $k=\frac{\ln [\mathrm{A}]_{0}-\ln [\mathrm{A}]_{t}}{t}=\frac{\ln (0.160)-\ln (0.0200)}{5.00 \mathrm{hr}}=0.416 \mathrm{hr}^{-1}$

For the correct units, consistent with the calculated value:
hr^{-1}
(b) For the correct answer and a valid justification:

Step 1 is the rate-determining step. The rate law of elementary step 1 is rate $=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]$,
which is consistent with the first order kinetics of the overall rate law.
(c) For the correct answer:

Remain the same. The rate constant, k, is independent of concentration and will remain the same at constant temperature.

