Let's Practice!

1. For the synthesis of ammonia at 500°C, $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$, the equilibrium constant is 6.0×10^{-2} . In which direction will the system shift to reach equilibrium (at 500°C) if $[NH_3]_{initial} = 1.0 \times 10^{-3} M$, $[N_2]_{initial} = 1.0 \times 10^{-5} M$, and $[H_2]_{initial} = 2.0 \times 10^{-3} M$?

$$Q = \frac{\text{ENH}_3 \text{J}^2}{\text{EN}_2 \text{J} \text{EH}_2 \text{J}^3} = \frac{(1.0\text{E}-3)^2}{(1.0\text{E}-5)(2.0\text{E}-3)^3} = 1.3 \times 10^{\frac{1}{7}} > 6.0 \times 10^{\frac{1}{2}}$$

K<Q, so the reaction will need to shift left + make more reactants to reach equilibrium.

2. For the reaction 2 NO(g) \rightleftharpoons N₂(g) + O₂(g), the equilibrium constant K = 2.4 x 10³ at a certain temperature. The initial concentrations are 0.044 M NO, 2.0 M N₂, and 0.65 M O₂. Is the system at equilibrium? If not, which way will the reaction shift and why?

$$Q = \frac{[N_2][O_2]}{[N_0]^2} = \frac{(2.0)(0.65)}{(0.044)^2} = 670 < 2,400$$

K > Q, so the system is not at equilibrium, + will need to shift right and make more products to achieve equilibrium.

4. The value of the equilibrium constant, K_c, at 25°C is 8.1 for the following reaction:

$$2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g)$$

What must happen for the reaction to reach equilibrium if the initial concentrations of all three species was 2.0 M?

- a. The rate of the forward reaction would increase, and [SO₃] would decrease.
- b. The rate of the reverse reaction would increase, and [502] would decrease.
- c. Both the rate of the forward and reverse reactions would increase, and the value for the equilibrium constant would also increase.
- d. No change would occur in either the rate of reaction or the concentrations of any of the species.

$$Q = \frac{[SO_2]^2[O_2]}{[SO_3]^2} = \frac{(2.0)^3(2.0)}{(2.0)^3} = 1 < 8.1$$

5. Under equilibrium conditions, 0.60 moles of A 0.60 moles of B and 0.60 moles of C are present in a 3.1 L solution for the reaction shown below. Determine the value of the equilibrium constant, K.

$$2A + B \leftrightarrow 2C$$

a.
$$K = 17$$

(b.)
$$K = 5.2$$
 c. $K = 1.7$ d. $K = 0.52$

c.
$$K = 1.7$$

d.
$$K = 0.52$$

$$K = \frac{ECJ^2}{EAJ^2EBJ} = \frac{(0.19)^2}{(0.19)^2(0.19)} = \frac{1}{0.19} = 5.3$$

Use the following information to answer #6-8: A sample of H₂S gas is placed in an evacuated, sealed container and heated until the following decomposition reaction occurs at 1000 K:

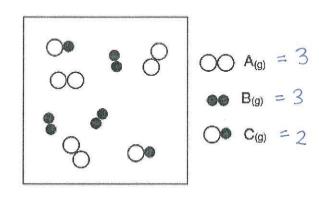
$$2 H_2 S(g) \leftrightarrow 2 H_2(g) + S_2(g) K_c = 86.2$$

6. Which of the following represents the equilibrium constant for this reaction?

(a.)
$$K_c = \frac{[H_2]^2[S_2]}{[H_2S]^2}$$

c.
$$K_c = \frac{2[H_2][S_2]}{2[H_3]}$$

a.
$$K_c = \frac{[H_2]^2[S_2]}{[H_2S]^2}$$
 c. $K_c = \frac{2[H_2][S_2]}{2[H_2S]}$
b. $K_c = \frac{[H_2S]^2}{[H_2]^2[S_2]}$ d. $K_c = \frac{2[H_2][S_2]}{2[H_2][S_2]}$


d.
$$K_c = \frac{2[H_2S]}{2[H_2][S_2]}$$

- 7. Initially, $[H_2S] = 0.1 \text{ M}$, $[H_2] = 0.01 \text{ M}$, and $[S_2] = 0.01 \text{ M}$. Which way will the reaction shift and why?
 - a.) The reaction will shift to make more products because Q < K.
 - b. The reaction will shift to make more reactants because QVAK Q < K.
 - c. The reaction will shift to make more products because QNANGL Q>K.
 - d. The reaction will shift to make more reactants because Q > K.

$$Q = \frac{(0.01)^2 (0.01)}{(0.1)^2} = 1 \times 10^{-4} < 86.2$$

- 8. If, at a given point in the reaction, the value for the reaction quotient Q is determined to be 2.5×10^8 , which of the following is occurring?
 - a. The concentration of the reactant is decreasing while the concentration of the products is increasing.
 - (b) The concentration of the reactant is increasing while the concentration of the products is decreasing.
 - c. The system has passed the equilibrium point, and the concentration of all species involved in the reaction will remain constant.
 - d. The concentrations of all species involved are changing at the same rate.

$$Q = \frac{ECJ}{EAJEBJ} = \frac{2}{(3)(3)}$$
= 0.22
2.3E-3 < 0.22
K Q

9. The picture above shows the species initially present in a 1.0 L container. The chemical reaction shown below takes place.

$$A + B \leftrightarrow C$$
 $K_c = 2.3 \times 10^{-3}$

Which of the following statements is true?

- a. The reaction shifts towards the products to reach equilibrium.
- (b.) The reaction shifts towards the reactants to reach equilibrium.
- c. The reaction mixture is at equilibrium.
- d. The direction of shift cannot be determined from the information given.

10. Consider the following reaction:

$$CH_4(g) + 2H_2S(g) \leftrightarrow CS_2(g) + 4H_2(g)$$

 $1.00~M~CH_4$, $1.00~M~CS_2$, $2.00~M~H_2S$ and $2.00~M~H_2$ are mixed in a reaction vessel at $960^{\circ}C$. At this temperature, the reaction will make more methane, CH_4 , and more hydrogen sulfide, H_2S What is a possible K for this reaction?

$$Q = \frac{\text{ECS}_2 \text{J} \text{EH}_2 \text{J}^4}{\text{ECH}_4 \text{J} \text{EH}_2 \text{S} \text{J}^2} = \frac{(1)(2)^4}{(1)(2)^2} = 4$$