How to Identify What is Oxidized or Reduced in a Reaction

Once you have identified a redox reaction by the change in oxidation state, now you can tell what was oxidized or reduced!

- a. A substance that has the element that has been <u>Oxidized</u> (LOST electrons) will have an oxidation number that becomes more <u>positive</u> (or less negative).
- b. A substance that has the element that has been feduced (GAINED electrons) will have an oxidation number that becomes more <u>negative</u> (or less positive).

Balancing Redox Reactions: We split redox reactions into two separate reactions

- The oxidation half-reaction has electrons as a product.
- The reduction half-reaction has electrons as a reactant

Oxidation Half-Reaction

Reduction Half-Reaction

$$\operatorname{Zn}(s) \to \operatorname{Zn}^{2+}(aq) + 2e^{-}$$

$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$
 Fe²⁺(aq) + 2e⁻ \rightarrow Fe(s)

Practice!

1. Using oxidation numbers, identify what was oxidized and reduced in each reaction below.

a)
$$4 \text{ Al(s)} + 3 \text{ O}_2(g) \rightarrow 2 \text{ Al}_2 \text{O}_3(s)$$

$$(\phi \rightarrow +3)$$

reduced:
$$O_2(g)$$
 $(\phi \rightarrow -2)$

b)
$$2 H_2O(l) + 4 MnO_4^-(aq) + 3 ClO_2^-(aq) \rightarrow 4 MnO_2(aq) + 3 ClO_4^-(aq) + 4 OH^-(aq) + 1 -2 + 7 -2 + 3 -2 + 4 -2 + 7 -2 -2 +1$$

2. In the reaction below, a piece of solid nickel is added to a solution of potassium dichromate.

Which species is being oxidized and which is being reduced?

Oxidized

Reduced

a.
$$Cr_2O_7^{2-}(aq)$$

Ni(s)

b.
$$Cr^{3+}(aq)$$

 $Ni^{2+}(aq)$

$$Cr_2O_7^{2-}(aq)$$

d.
$$Ni^{2+}(aq)$$

$$Cr^{3+}(aq)$$