
Oxidation-Reduction (Redox) Review

Oxidation-reduction (redox) reactions: where electrons are transferred from one atom to another.

- If a substance accepts an electron, it is reduced.
- If a substance loses an electron, it is Oxidized.
- Electrons are always transferred from the species that is oxidized to the species that is reduced.
 - → Reduction (gain in electrons) + Oxidation (loss of electrons) = Redox!

Two great mnemonics!

- 1. OIL RIG : Oxidation Is Loss (OIL) and Reduction Is Gain (RIG)
- 2. LEO goes GER: A species loses electrons when oxidized, and gains electrons when reduced.

Almost all reaction types (except double replacement) are redox. However, that statement is not always true – the only way to be certain if a reaction is redox is to determine if any species has gained or lost electrons by looking for a change in oxidation state/number.

• If a chemical reaction does have a species which changes oxidation number: yes, it's redox!

Oxidation Numbers/Oxidation States

Oxidation states are <u>imaginary</u> charges assigned based on a set of rules simply used to determine <u>electron</u> flow.

- → Even though they look like them, oxidation states are **NOT** ionic charges.
- → Oxidation numbers can be assigned to each atom in an element, ion, or compound...whether the compound is

How to Assign Oxidation States (aka Oxidation Numbers)

Free Elements or Monatomic Ions

- 1. Free elements = 0
- Monoatomic ions = their charge

Examples	Free Elements			Monatomic Ions	
	Fe(s)	Br ₂ (l)	O ₃ (g)	Au ³⁺	S ² -
Oxidation #	0	0	0	+3	-2

Atoms in a Compound

- 3. All atoms in a neutral compound add up to 0.
- 4. All atoms in a polyatomic ion add up to the ion's charge.

	In order of priority	Oxidation State
Metals	Group 1A metals	+1
	Group 2A metals	+2
	Group 3A metals	+3
Non-metals	fluorine	-1
	hydrogen	+1
	oxygen	-2
	Group 7A	-1
	Group 6A	-2
	Group 5A	-3

Helpful hints:

- Group 4A (the carbon family) and transition metals are NOT listed you will ALWAYS have to solve for them.
- Coefficients do NOT affect oxidation numbers.
- You can split up ionic compounds with a polyatomic and use the ion's overall charge to solve for the oxidation states of each element in the ion

Easy practice: Elements, Ions, and Simple Ionic Compounds

Medium practice: More compounds and polyatomic ions

$$2x + 4(+i) = \phi$$

$$2x + 4 = \emptyset$$
 $+6,-7$

$$\begin{cases} 5. & \text{Cr}_2\text{O}_7^{2-}(\text{aq}) \\ +6_3-2 \end{cases} \qquad 2\times +7(-2)=-2 \\ 2\times -14=-2 \end{cases}$$

$$2 \times -14 = -2$$

Conflict-resolution practice: What do you do if the rules don't agree?

6.
$$SO_3^{2-}(aq) \times + 3(-2) = -2$$

7.
$$H_2O_2(1)$$
 $2(+1) + 2x = \phi$

$$+1,-1$$
 $2+2x=\emptyset$

Fun practice! (a)
$$2 (+1) + x + 3(-2) = \emptyset$$
9. $H_2SeO_3(aq)$

Fe³⁺,
$$c_{104} \Rightarrow x + 4(-2) = -1$$

 $x - 8 = -1$

How to Identify What is Oxidized or Reduced in a Reaction

Once you have identified a redox reaction by the change in oxidation state, now you can tell what was oxidized or reduced!

- a. A substance that has the element that has been <u>Oxidized</u> (LOST electrons) will have an oxidation number that becomes more <u>positive</u> (or less negative).
- b. A substance that has the element that has been reduced (GAINED electrons) will have an oxidation number that becomes more <u>negative</u> (or less positive).

Balancing Redox Reactions: We split redox reactions into two separate reactions

- The oxidation half-reaction has electrons as a <u>product</u> .
- The reduction half-reaction has electrons as a reactant.

Oxidation Half-Reaction

Reduction Half-Reaction

$$\operatorname{Zn}(s) \to \operatorname{Zn}^{2+}(aq) + 2e^{-}$$

Oxidation Half-Reaction Reduction Half-Reaction
$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$
 $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$

Practice!

1. Using oxidation numbers, identify what was oxidized and reduced in each reaction below.

a) 4 Al(s) + 3
$$O_2(g) \rightarrow 2 Al_2O_3(s)$$

reduced:
$$O_2(g)$$
 $(\phi \rightarrow -2)$

b)
$$2 H_2O(l) + 4 MnO_4^-(aq) + 3 ClO_2^-(aq) \rightarrow 4 MnO_2(aq) + 3 ClO_4^-(aq) + 4 OH^-(aq) + 1 -2 + 7 -2 + 3 -2 + 4 -2 + 7 -2 -2 +1$$

oxidized:
$$C10_2$$
 ($C1:+3 \rightarrow +7$)
reduced: MnO_4 ($Mn:+7 \rightarrow +4$)

2. In the reaction below, a piece of solid nickel is added to a solution of potassium dichromate.

14 H⁺(aq) + Cr₂O₇²⁻(aq) + 3 Ni(s)
$$\rightarrow$$
 2 Cr³⁺(aq) + 3 Ni²⁺(aq) + 7 H₂O(l)
+ (+6 -2 ϕ +3 +2 +1,-2

Which species is being oxidized and which is being reduced?

Oxidized

Reduced

a.
$$Cr_2O_7^{2-}(aq)$$

b.
$$Cr^{3+}(aq)$$

$$Ni^{2+}(aq)$$

$$Cr_2O_7^{2-}(aq)$$

d.
$$Ni^{2+}(aq)$$

$$Cr^{3+}(aq)$$