Here and Back Again: A Mole-ish Review

Part I: The Mole - Massively Important

Type of Particle	Definition	Example
atom	single element	Si, C, Mg, Ca, Cu, Zn, S Br, I, N, Cl, H, O, F
ion	charged element/polyatomic	N ³⁻ , SO ₄ ²⁻ , PO ₄ ³⁻
molecule	covalent compound (diatomic elements are considered molecules)	C ₂ H ₆ , H ₂ O Br ₂ , I ₂ , N ₂ , Cl ₂ , H ₂ , O ₂ , F ₂
formula unit	ionic compound	CuCl ₂ , Na ₂ SO ₄ , KBr

Examples and Practice:

What is the mass in grams of 1.60 x 10^{24} molecules of B_3Br_6 ?

2. How many moles of nitrogen gas are found in a 57.2 g sample?

$$57.29 N_2$$
, $\times \frac{1 \text{ mol}}{28.029} = 2.04 \text{ mol } N_2$

3. How many formula units of MgCO₃ are contained in a 2.34 mol sample?

Mole Conversions Using a Chemical Formula

- A chemical <u>formula</u> shows the kinds of elements and numbers of atoms or moles of each element in the smallest representative unit of a substance.
- You can use a chemical formula as a <u>mole</u> ratio to convert between moles of a compound and moles of an atom <u>Within</u> a compound

*If a problem give a <u>Compound</u> but asks for <u>atoms</u> or <u>ions</u> (or the opposite), then an extra conversion fraction is required!

Examples and Practice:

1. A student measures out 2.0 moles of Li₃PO₄. How many moles of lithium ions, Li⁺, are in the sample?

2. Freon, which has the formula CCl₂F₂, is used as a refrigerant in air conditioners and as a propellant in aerosol cans. Given a 5.56 mg sample of Freon, calculate the number of molecules of freon in that sample.

3. If two atoms of carbon combine with four atoms of hydrogen in the compound ethene (C₂H₄), how many grams of hydrogen would be needed to combine completely with 6.0 grams of carbon?

6.0 g C
$$\times \frac{1 \text{ mol } C}{12.01 \text{ g C}} \times \frac{4 \text{ mol } H}{2 \text{ mol } C} \times \frac{1.008 \text{ g H}}{1 \text{ mol } H} = 1.0 \text{ g H}$$

4. How many total protons are present in a 4.10 mole sample of CH₄? G p⁺ + 4(1 p⁺) = 10 p⁺

5. Given a sample of 3.56×10^{24} molecules of C_4H_8 , how many moles of carbon are in the sample?

