Totally Epic AP Chem Review: Thermodynamics!

Entropy: Let the chaos begin!

Entropy can be considered the extent of randomness or <u>disorder</u> in a chemical or physical system. The more <u>positions</u> available (the more space, or more places something can move) the greater the entropy.

The entropy change for a system (Δ) is calculated from the absolute entropies of the products and reactants.

$$\Delta S_{system}^o = \sum [S^o(products)] - \sum [S^o(reactants)]$$

Units of Entropy:
$$\frac{J}{\operatorname{mol}\cdot K} = J \cdot \operatorname{mol}^{-1} \cdot K^{-1}$$

*Note: Entropy of element in most stable form is NOT zero!!

- → The entropy of a perfect, pure crystal at ______ is given a value of zero,
- \rightarrow All absolute entropies for individual substances in the real world, are $\underline{+}$ \rightarrow even elements!

Two biggest factors for evaluating ΔS_{rxn}

- 1) Change in \underline{State} of matter (gas $\underline{>}$ aqueous $\underline{>}$ liquid $\underline{>}$ solid)
- 2) Change in # of particles $(\land particles = \land places for particles to be = <math> \land places for particles to be = <math> \land places for particles to be = for parti$

In order of lowest to highest entropy:

Solids < Liquids < Aqueous solutions << Gases < More moles of Gas

Thermodynamically Favorable Processes

 Δ **G** (Gibb's free energy) represents the amount of useful work that can be obtained from a process at constant temperature and pressure. "Free" energy refers to the amount of energy available to do work once you have "paid your price" to entropy.

$$\Delta G^{\circ}_{reaction} = \Delta H^{\circ} - T\Delta S^{\circ}$$

T = temperature in Kelvin

 $\Delta H = \text{enthalpy change (usually has units of kJ/mol or kJ mol^-1)}$

 ΔS = entropy change (usually has units of $J/(mol \ K)$ or $J \ mol^{-1} \ K^{-1}$)

Notice difference in units! You must make both units the same (J or kJ) before you calculate ΔG.

The sign of ΔG tells if any given process is thermodynamically favored:

If ΔG is	The Process is	Term
Negative (-)	Thermodynamically favored (spontaneous)	Exergonic
Positive (+)	Not thermodynamically favored (reverse reaction is spontaneous)	Endergonic
Zero (o)	At equilibrium	

You can also calculate the standard Gibb's Free Energy Change for a reaction by comparing the standard free energy of formation of reactants and products: this should look very familiar!

$$\Delta G_{\text{reaction}}^0 = \sum [G_f^0(\text{products})] - \sum [G_f^0(\text{reactants})]$$

Note: Elements DO have a value of zero for ΔG° , because forming an element from itself results in no change.

Elements ARE zero for: $\triangle H$, $\triangle G$

Elements are NOT zero for: \triangle

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

What does it mean when a reaction is "driven" by enthalpy, entropy, or both?

Nature favors:

- ±ΔS (increasing entropy, greater disorder)
 -ΔH (exothermic, release of energy)
- **Driven by enthalpy:** a very exothermic reaction $(-\Delta H)$ overcomes a decrease in entropy $(-\Delta S)$
- **Driven by entropy:** an endothermic reaction $(+\Delta H)$ occurs spontaneously because of a very $+\Delta S$

You can use the signs of ΔS and ΔH (together with the reaction $\Delta G = \Delta H - T\Delta S$) to predict qualitatively the spontaneity of a given reaction. You can show this graphically, which leads to the best graph of all time (but SHHHH! It's a secret. (3)

$$\Delta G^{\circ} = -n \Im E^{\circ}$$
$$\Delta G^{\circ} = -RT \ln K$$

ΔG°	K	E°
0	at equilibrium	0
negative	>1, products favored	+
positive	<1, reactants favored	

Let's Practice!

1. Predict the sign of the entropy change for each of the following reactions:

 $-\Delta S$ a. $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$ $(aq) \rightarrow (g)$ $+\Delta S$ b. $NH_4Cl(s) \rightarrow NH_3(g) + HCl(g)$ (5) \rightarrow (9)

 $+\Delta S$ c. $H_2(g) + Br_2(I) \rightarrow 2HBr(g)$ 1 (9) $\rightarrow 2$ (9)

- 2. Which of the following is true concerning the reaction where two chlorine atoms form one chlorine molecule, as shown in the following equation: $2 \operatorname{Cl}(g) \rightarrow \operatorname{Cl}_2(g)$?
 - a. This reaction is driven by enthalpy: the large negative ΔH overcomes a positive ΔS .
 - b.) This reaction is driven by enthalpy: the large negative ΔH overcomes a negative ΔS .
 - c. This reaction is driven by entropy: the large positive ΔS overcomes a positive ΔH .
 - d. This reaction is driven by entropy: the large positive ΔS overcomes a negative ΔH .
- 3. Which of the following correctly describes the standard voltage, E° , and the standard free energy change, ΔG° , for the reaction represented below?

$$X(s) + Y^{+}(aq) \rightleftharpoons X^{+}(aq) + Y(s), K_{eq} = 5 \times 10^{-5}$$

a. E° and ΔG° are both positive.

(d.) E° is negative and ΔG° is positive.

b. E° and ΔG° are both negative.

E° and ΔG° are both zero.

- c. E° is positive and ΔG° is negative.
- 4. A given reaction, $X_2(g) + Y_2(g) \rightarrow 2$ XY(g), is not thermodynamically favorable at 298 K. However, at higher temperatures the reaction becomes spontaneous. Which of the following is true at 298 K?

d. +

$$H_2O(l) \rightarrow H_2O(s)$$

- 5. Which of the following is true for the above reaction $\cong 25^{\circ}$ C?
 - a. The value of ΔS is positive.
- c. The value of ΔH is positive.
- The value of ΔG is positive.
- d. The reaction is favored at 1.0 atm and 298 K.