Totally Epic AP Chem Review: Thermochem Basics!

Thermochemistry: deals with the <u>energy</u> changes that occur during chemical reactions. Temperature: measure of the average <u>Kinetic</u> energy of the particles of a substance

- → Temperature is an <u>intensive</u> property: amount of matter doesn't affect it!
- → The Kelvin temperature is directly proportional to the average kinetic energy. For example, doubling the Kelvin temperature doubles the average kinetic energy.
- → As absolute zero is approached (o K), the particles approach zero kinetic energy.

A Maxwell-Boltzmann distribution shows how the particles at a high temperature have greater kinetic energies than those at a low temperature.

capable of being

Thermal energy: internal energy of an object due to the Kinetic energy of its particles Heat (q): amount of thermal energy transferred from one object to another

- → heat is an <u>extensive</u> property (depends on how much of a substance you have), unlike temperature.
- → Heat always flows from a Warmer object to a cooler object.

- a. the <u>System</u>: the substance of interest

 b. the <u>Sussoundings</u>: whatever is outside the system

Specific Heat Capacity (C): amount of heat (energy) required to raise temperature of 1 g of a substance by 1 K (1°C)

- \rightarrow Units are $\frac{J}{g \circ C}$ or $\frac{J}{g \cdot K}$
- → Metals have relatively | bld | specific heats relatively less energy is required to raise their temperatures.
- → Water has a relatively <u>high</u> specific heat requires much more energy to achieve a similar temp change.

Specific Heat Capacity $(C_p) = \frac{\text{quantity of heat supplied}}{(\text{mass of object})(\text{temperature change})}$

Substance	Specific Heat (J/g · K)		
Al	0.902		
$H_2O(l)$	4.184		
Glass	0.84		

How to calculate heat transferred: mCAT!

$q = mC\Delta T$

q = heat transferred m = mass of substance c = specific heat capacity $\Delta T = T_{final} - T_{initial} = change in temperature$

ΔT Object	Sign of ΔT	Sign of q	Direction of Heat Transfer
Increase	+	+	Heat transferred into object
Decrease	-	-	Heat transferred

Enthalpy Change (ΔH): amount of energy <u>absorbed</u> or <u>released</u> as heat by a system when the pressure is constant; measured in units of $\frac{\sqrt{mol(xn)}}{mol_{rxn}} = \frac{J}{mol_{rxn}}$

- → Enthalpy change can be applied to physical or chemical changes
- The magnitude of embalpy change is directly proportional to the moles of reactants and products involved in the change, but Not enthalpy!
- → the sign of enthalpy change (+ or -) indicates direction of energy flow

Standard Enthalpy Change: (ΔH°): enthalpy changed measured at Standard conditions

- Thermochemistry standard conditions are NOT the same as gas laws STP
- Thermochemistry standard conditions are: <u>25°C</u> and <u>1 9†m</u>

Enthalpy Changes of Different Types of Reactions

You will encounter a variety of Subscripts following the ΔH, however, they are simply indicating a Specific type of reaction or change of state.

Examples

 $\Delta H_{remb}^{\circ} = \text{Enthalpy of Combustion} \qquad \qquad \text{(Heat Energy Released during Combustion Reactions)}$ $\Delta H_{neut}^{\circ} = \text{Enthalpy of Neutralization} \qquad \qquad \text{(Heat Energy Released during Acid-Base Neutralization Reactions)}$ $\Delta H_{soln}^{\circ} = \text{Enthalpy of Solution} \qquad \qquad \text{(Heat Energy Released/Absorbed Dissolving a Solute in Water)}$ $\Delta H_{vap}^{\circ} = \text{Enthalpy of Vaporization} \qquad \qquad \text{(Heat Energy Absorbed to Convert from Liquid to Gas Phase)}$ $\Delta H_{fus}^{\circ} = \text{Enthalpy of Fusion} \qquad \qquad \text{(Heat Energy Absorbed to Convert from Solid to Liquid Phase)}$ $\Delta H_{f}^{\circ} = \text{Enthalpy of Formation} \qquad \qquad \text{(Heat Energy Released during Formation of 1 Mole of a Substance)}$

Two Thermochemical Reaction Types

Endothermic + △ H	Exothermic -△H			
Energy is absorbed (by system)	Energy is released (by system)			
$+q/mol_{rxn} = +\Delta H_{rxn}$	$-q/mol_{rxn} = -\Delta H_{rxn}$			
Break "end" bonds/IMFs	Form new bonds/attractions			
Energy appears in reactants	Energy appears in products			
The energy added (for endo AND exo) will always be positive value!				

Exothermic Reaction

Thermochemical equation: chemical equation that includes the enthalpy change

Let's Try! Complete the chart below.

Equation with Separate ΔH° _{rxn}	Thermochemical Equation	Endo- or exothermic?
CH4 + 202 > CO2 + 2H2O AH = -890 KT	$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O + 890 \text{ kJ}$	exo
$H_2O(I) \rightarrow H_2O(g)$ $\Delta H_{vap} = 44 \text{ kJ/mol}_{rxn}$	44 KJ + H2 O(0) + H2 O(g)	endo
$2 C_2H_6 + 7 O_2 \rightarrow 4 CO_2 + 6 H_2O \Delta H^{\circ}_{rxn} = -3120 \text{ kJ/mol}_{rxn}$	^	ex0

2C2H2+702+4C02+6H2O+3120 KJ

Energy Stoichiometry! (3)

Enthalpy is commonly measured in kJ/molrxn, but what is a mole of reaction?

1 mol_{rxn} = 1 mole of reaction = stoichiometric # of reactants/ products

For the combustion of ethane:

When — mole of reaction has occurred,

- $\frac{2}{7}$ mol of C_2H_6 reacted $\frac{H}{9}$ mol of CO_2 were produced $\frac{1}{9}$ mol of O_2 reacted $\frac{1}{9}$ mol of H_2O were produced $\frac{1}{9}$ mol

Luckily for us, the enthalpy of a reaction, when measured in kJ/mol_{rxn}, can act as a Conversion factor between the amount of chemicals which react and the energy that is absorbed or released by the reaction!

Example 1: Give the following reaction, 2 Fe + 3 CO₂ \rightarrow 3 CO + Fe₂O₃ ($\Delta H = +25$ kJ/mol_{rxn}) what energy change occurs when 6.00 moles of carbon dioxide react?

$$6.00 \text{ mol CO}_2 \times \frac{1 \text{ mol nen}}{3 \text{ mol CO}_2} \times \frac{25 \text{ kJ}}{1 \text{ mol nen}} = 50.0 \text{ kT absorbed}$$

Example 2: Give the following reaction, $N_2 + 3 H_2 \rightarrow 2 NH_3$ ($\Delta H = -324 \text{ kJ/mol}_{rxn}$) what mass of hydrogen must have reacted if 525 kJ of heat energy were released?

$$7525 \text{ kJ} \times \frac{1 \text{ mol rxn}}{1 \text{ mol rxn}} \times \frac{3 \text{ mol Hz}}{1 \text{ mol rxn}} \times \frac{2.016 \text{ z Hz}}{1 \text{ mol Hz}} = 9.80 \text{ g Hz}$$