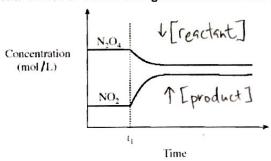
Le Châtelier's Principle: If a "stress" (Change) is applied to a system at equilibrium, processes will occur to counteract (undo) that change.

- Temperature exothermic think of heat is a product; endothermic think of heat is a reactant.
- Adding or removing a reagent shift tries to reestablish K. If you remove it the reaction shifts to replace it; if you add it, the reaction shifts to get rid of it
 - o UNLESS: you are adding or subtracting a solid or pure liquid: this will <u>Not</u> change the concentration, and therefore this will not shift the position of equilibrium!
- <u>Pressure</u> Increasing pressure favors a shift to side with the <u>fewest</u> # of moles of gas and vice versa.
 - o UNLESS: you increase pressure by adding an <u>inert</u> (unreactive) gas: this will not increase the number of effective collisions, and therefore will not affect equilibrium position.
- Volume same effect as pressure; remember Boyle's Law... Pressure and volume are inversely related, thus
 increasing the volume is the same as decreasing the pressure and vice versa.
- Catalysts NO EFFECT on K; just gets to equilibrium faster (kinetics moment)!
- REMEMBER nothing but a change in temperature will change the VALUE of K
- Increasing the temperature causes equilibrium to be reached <u>faster</u> (regardless of shift!)

Practice:

6 mol g = 6 0 mol g = 6 $P_4(s) + 6 \text{ } Cl_2(g) \rightleftharpoons 4 \text{ } PCl_3(l) + \text{heat}$

1. Liquid phosphorus trichloride is produced by the exothermic reaction:


Change	Direction of shift	Effect on K?
Addition of phosphorus trichloride	nohe	none
Reduction of container volume	\rightarrow (right)	none
Increase in temperature	← (left)	VK
Increase in partial pressure of chlorine gas	→ (right)	none
Decrease in temperature	-> (right)	ΛK

2 molgas = 2 nolgas

2. The endothermic reaction: $heqt + 2 COF_2(g) \rightleftharpoons CO_2(g) + CF_4(g)$

Change	Direction of shift	Effect on K?
Increase in temperature	→ (right)	ΛK
Decrease in temperature	← (left)	VK
Addition of $A_{\Gamma}(a)$	hone	nohe
Increase in pressure	none 7 Same #	hone
Decrease in pressure	none - mol gas	none
Addition of catalyst	none	none

3. Consider the following reaction at chemical equilibrium: $N_2O_4(g) \rightleftharpoons 2 \ NO_2(g)$. At time t_1 , heat is applied to the system. Which of the following best describes the equilibrium reaction and the change in K_c ?

- a. exothermic and Kc increases
- b. exothermic and Kc decreases
- (c.) endothermic and K_c increases
- d. endothermic and Kc decreases