Titration Curves: Quick Summary

Strong Acid Titrated with Strong Base

Strong Base Titrated with Strong Acid

How to Choose the Best Indicator: An indicator is a weak <u>ACI d</u> where HA and A⁻ are different colors!

• If pH ≤ pK₃ mostly <u>HA</u> (one color), if pH > pK₃ mostly <u>A</u> (different color)
Choose an indicator that:

- > pka2 ≈ pH equivalence point (moles acid = moles base).
- ► Has $K_a \approx 1 \times 10^{-pH}$ (that is, the pH of the solution at equivalence point)

Buffer Influence on Titration Curves: Weak/Strong Titration

- Buffers make the titration curve <u>flat</u> at the region where buffering occurs. On a titration curve, this is the point of inflection (buffer arrow). ⇒ mid point / ½ equivalence pt
- At point of inflection, solution has maximum buffering capacity, and:
 - > [acid] = [conjugate base] or [base] = [conjugate acid]
 - $P = pK_a (or pH = 14 pK_b)$
 - > [titrant] = 1/2 [weak acid] or [titrant] = 1/2 [weak base]

Weak Acid Titrated with Strong Base

Weak Base Titrated with Strong Acid

For any monoprotic titration (weak or strong): use [MAVA = MBVB] to find location of equivalence pt!

Let's Practice!

added base

- 1. Consider the titration of a 20.0 mL sample of 0.105 M HCN ($K_a = 4.9 \times 10^{-10}$) with 0.125 M NaOH.
 - a. What is the initial pH? Weak and only!

$$K_{q} = \frac{EH_{3}O^{+}J[CN-]}{EHCNJ_{i}^{-}x} = \frac{x^{2}}{C.105-x} = \frac{x^{2}}{0.105} = \frac{x^{2}}{0.105}$$

Assume x<< 0.105

$$X = \sqrt{(4.9E - 10)(0.105)} = 7.2E - 6M = [H_3O^{+}]$$

 $pH = -log(7.2E - 6) = [5.14]$

b. What volume of base must be added to reach equivalence point?

$$V_{B} = \frac{0.105 \times 20.0}{0.125} = [16.8 \text{ mL}]$$

- For the following graphs, answer these questions:
 - What type of titration was performed? (That is, what vs what?)
 - What is the approximate pH at the equivalence points?
 - For relevant graphs, what is the pKa or pKb of the analyte?

- (a)
- (b)
- mL acid added
- mL acid added (d)

- a) WA + SB
- al SA+SB
- a) SB+SA
- 9) WB + SA

6) ~8

6) ~6

- c) pKa = 3.9
- d) n/a
- c) PK = 3.5 (Since pk = 10.5)