Totally Epic AP Chem Review: Buffers and Titrations in a Day!

Buffer: solutions that resist change in pH

Whenever a Weak acid or base is present with its conjugate salt - YOU HAVE A BUFFER!!!

4 Ways to Make a Buffer		
Components	Generic Form	Ideal Buffer Ratio
weak acid and its conjugate base	HA and A ⁻ or HA and <i>Na</i> A	mole ratio
weak base and its conjugate acid	B and BH ⁺ or B and BH <i>Cl</i>	mole ratio
weak acid + strong base (titration)	HA + NaOH → H₂O + NaA	$\frac{1}{2}$ weak acid: $\frac{0.5}{2}$ strong base mole ratio
weak base + strong acid (titration)	B + HCl → BH+ + Cl ⁻	weak base: 0.5 strong acid mole ratio

How does a buffer work?

The acidic species donates protons to resist increases in pH, and the basic species will accept protons to resist decreases in pH.

When preparing a buffer solution, you want:

- LHAJ = LA-J (acid/base ratio $\approx 1:1$)
- pH of buffer ≈ pKa (of acid form)
 - → weak acid K_a with an exponent ≈ buffer pH.
- High <u>Capacity</u> (lots of acid and base)

Calculating the pH of a Buffer Solution: Henderson-Hasselbach Equation

We can derive an equation that relates the pH of a buffer solution to the initial concentration of the buffer components by rearranging the acid ionization constant expression. This can be written in two different formats:

$$[H_3O^+] = K_a \frac{[HA]}{[A^-]}$$
 or $pH = pKa + log(\frac{[A^-]}{[HA]})$

[HA] = Weak acid or salt of conjugate base

[A⁻] = Weak base or salt of conjugate acid

- WARNING: If concentrations of separate solutions are given with volumes and then the two are added together, you must recalculate the "new concentrations" due to dilution.
- > Shortcut!!! Since $\frac{[Acid]}{[Base]}$ is a ratio in the equations, the <u>amount of moles may be substituted in place of concentration</u> because the final volumes will be the same, and thus cancel out.

Let's Practice!

1. Calculate the pH of a solution containing 0.75 M lactic acid, $HC_3H_5O_3$ ($K_a = 1.4 \times 10^{-4}$) and 0.25 M sodium lactate,

NaC3H5O3.

$$pH = pK_q + log \frac{[A-J]}{[HAJ]} = -log(1.4E-4) + log(\frac{0.25}{0.75}) = [3.38]$$
 * rote: $pH < pK_q$
Since $EHAJ > [A-J]!$

2. Calculate the pH of a solution prepared by mixing 30.0 mL of 0.300 M acetic acid, HC₂H₃O₂, with 20.0 mL of 0.350 M NaC₂H₃O₂. The K_a for acetic acid is 1.80 x 10^{-5} .

$$pH = pK_a + log \frac{[A-7]}{[HA]} = -log(1.80E-5) + log(\frac{7.00E-3}{9.00E-3}) = 4.636$$

$$\frac{4.7447}{-0.1091} = -0.1091$$

Acid	Acid Dissociation Constant, K _a
H ₃ PO ₄	7 × 10 ⁻³
H ₂ PO ₄ -	8 × 1(+1) √
HPO ₄ 2-	5 × 10 ⁻¹³

1. On the basis of the information above, a buffer with a pH = 9 can best be made by using

a.
$$H_3PO_4 + H_2PO_4^-$$

2. Which of the following changes would affect the pH of a buffer solution?

Doubling the amount of acid and conjugate base used.

Doubling the amount of water in the solution. Adding a small amount of strong acid or strong base.

- b. I and II only
- c. II and III only
- I, II, and III

- 3. A buffer solution can be formed by dissolving equal moles of:
 - b. HF and NaOH

CH3COOH and NaCl

c. KBr and Na₃PO₄

- HF and NaF
- 4. Which of the following acids would be the best choice to create a buffered solution with a pH of 5?

$$K_a = 5.9 \times 10^{-2}$$

$$K_a = 1.8 \times 10^{-5}$$

$$K_a = 5.6 \times 10^{-3}$$

$$K_a = 3.0 \times 10^{-8}$$

Net Ionic Equations for Weak + Strong Acid/Base Reactions

Remember, strong acids and bases dissociate 100%, but weak acids and bases do not!

In a strong/ weak net ionic, the only spectator ion that will be removed is the conjugate of the
 Stong acid or base!

Example:

molecular complete equation:

 $HNO_2(aq) + NaOH(aq) \rightarrow H_2O(I) + NaNO_2(aq)$

net ionic equation:

 $HNO_2(aq) + OH^-(aq) \rightarrow H_2O(l) + NO_2^-(aq)$

Let's Practice!

1. Write the balanced net ionic equation for the reaction that occurs between HCl and NH₃.

2. Write the balanced net ionic equation for the reaction that occurs between KOH and HC₂H₃O₂.

How Does a Buffer Work? Explaining with Reactions.

Example Buffer #1: HBrO3 and LiBrO3

1. Write the equation that represents that reaction that explains why adding a few drops of HBr will not significantly change the pH of the buffer solution:

2. Write the equation that represents that reaction that explains why adding a few drops of NaOH will not significantly change the pH of the buffer solution:

Example Buffer #2: NH4Cl and NH3

 Write the equation that represents that reaction that explains why adding a few drops of HBr will not significantly change the pH of the buffer solution:

2. Write the equation that represents that reaction that explains why adding a few drops of KOH will not significantly change the pH of the buffer solution: