How to Answer Periodic Trends Free Response Questions

Justifying all of the trends on the periodic table can be simplified using these two generalizations:

- Use number of protons (or Z_{eff}) to justify trends across a period.
- 2. Use <u>increased distance (greater value of n)</u> to justify trends <u>down a group</u>.

How to Earn Full Points on Periodic Trends Problems

Follow these three steps EVERY time you answer a periodicity question!

- 1) Locate both elements on the periodic table and state the principal energy level (n) and the sublevel containing the valence electrons for each element.
- 2) Do they have the same or different n_values?
- 3) If same n: argue with number of <u>protons</u>; if different n: argue with n vs. n <u>(distance)</u>.

 **BEAMERS: a trand is not an avalanation!

 **BEAMERS: a trand is not an avalanation!

REMEMBER: a trend is not an explanation!

Simply identifying a trend (atomic radius decreases as you move from left to right across a period, electronegativity decreases as you move down a column, etc) earns ________ points!

Avoid Losing Easy Points

- 1. When explaining, you must refer to ALL species (atoms, ions) referenced in the question, or you will not get full credit.
- 2. Read the question: justify with "principles of atomic structure" or "Coulomb's Law" (it will always be one or the other (3).

- 1. Comparisons between isoelectronic species: explain with number of pt
 - a. Isoelectronic species with More protons are SMALLER because the valence electrons are MORE attracted to and thus CLOSER to the nucleus.
 - b. Isoelectronic species with 1ess protons are LARGER because the valence electrons are LESS attracted to and thus FARTHER from the nucleus.
- 2. Comparisons between an atom and its ion/ions of the same atom, Same n: explain with e⁻/e⁻ repulsion
 - a. Positively charged cations are **SMALLER** than the neutral atom because of ______ e⁻/e⁻ repulsion, thus valence electrons are CLOSER to the nucleus.
 - b. Negatively charged anions are LARGER than the neutral atom because of ______ e^/e^ repulsion, thus valence electrons are FARTHER from the nucleus.
- 3. Comparisons between an atom and its ion/ions of the same atom, different n; explain with distance
 - a. If a species has their outermost electrons on a lower energy level (n), their valence electrons are closer to and thus more attracted to the nucleus.

Atomic Radius Trend

Electronegativity Trend

Metallic Character Trend

Zeff Trend

Attraction of Outer e⁻ to nucleus

- Atomic radius (size of atom): distance between the nucleus and valence electrons.
- lonic radius: distance from the nucleus to valence electrons in a charged ion .
- Metallic character can be defined as how easily an atom loses an electron. This is exactly the apposite of the trend for first ionization energy: f IE = f metallic character.
- Reactivity depends on whether the element reacts by losing electrons (metals) or gaining electrons (nonmetals).
 - Metals are MORE reactive as you move down a column: because metals lose electrons as they react,
 LESS attraction between valence electrons and nucleus results in a more reactive metal.
 - Non-metals are LESS reactive as you move down a column: because non-metals gain electrons as they
 react, LESS attraction between valence electrons and nucleus results in a <u>less</u> reactive non-metal.
- Electronegativity: attraction of an atom for pair of <u>Valence</u> level electrons in a covalent bond with another atom. Think of the atoms as playing "tug of war" with their <u>Valence</u> shell electrons!
- ionization Energy (IE): energy required to <u>\left Move</u> an electron from a gaseous atom or ion. Higher attraction between nucleus and electron = harder to remove electron = \(\frac{1}{2} \) ionization energy
 - o 1st Ionization Energy: (IF,) energy required to remove the first (highest energy level) electron
 - o 2nd Ionization Energy: (<u>I E</u>) energy required to remove the second highest energy electron
 - o Each additional electron requires MORE energy to remove than the previous one, so: IE1 < IE2 < IE3 etc.

Note: You can identify an element by being given a table showing the pattern of successive ionization energies.

| Successive Ionization Energies (kJ/mol) | | First | Second | Third | Fourth | Fifth | 801 | 2,426 | 3,660 | 24,682 | 32,508 |

3 valence e, blc 4th e requires significantly more energy to remove than first 3 e, so this must be an element from the 3rd group (the boron family).