Totally Epic AP Chem Review: Acids and Bases in a Day!

Various Ways to Describe Acid Strength		
Property	Strong Acid	Weak Acid
Ionization constant (K _a) value	K _a is large	K _a is small
Percent Ionization	% Ionization = 100%	% Ionization << 100%
Position of the dissociation (ionization) equilibrium	Far to the <u>right</u> (product-favored)	Far to the <u>left</u> (reactant-favored)
Equilibrium concentration of H ⁺ when compared to original [HA]	[H ⁺] ≈ [HA] ₀	R1(E [H+] << [HA]0

Generic Acid: HA + H₂O → H₃O⁺ + A⁻

$$K_{\alpha} = \frac{[x][x]}{[HA]_i - x} \approx \frac{[x][x]}{[HA]_i}$$
 where $[H_3O^*] = x << [HA]_i$

Conjugate Base (of Generic Acid): A⁻ + H₂O → HA + OH⁻

$$K_b = \frac{[x][x]}{[A^-]_i - x} \approx \frac{[x][x]}{[A^-]_i}$$
 where [OH-] = x << [A-]_i

Self-Ionization of Water: About 2 out of 1 billion water molecules self-ionize!

$$H_2O(1) + H_2O(1) \rightarrow H_3O^+(aq) + OH^-(aq)$$

$$K_w = [H_3O^+][OH^-] = K_a \times K_b = 1.0 \times 10^{-14}$$
 (at 25°C)

1) Strong Acids/ Strong Bases

You MUST memorize:

Strong Acids: HBr, HI, HCl, H₂SO₄, HNO₃, HClO₄

Hint: BriCl-SO-NO-ClO ("Brickle-So-No-Clo")

Strong Bases: Groups IA and IIA metal hydroxides

100% Dissociation! Easy life:

$$pH = -\log[H^+] = -\log[HA]_o$$

$$pOH = -\log[OH^-] = -\log[B]_o$$

$$pH + pOH = 14$$

2) Weak Acids/ Weak Bases

If it's not strong, it's weak!

< 1% Dissociation -> Equilibrium!

Time saver:

- Since acids ionize 1 H⁺ at a time, [H₃O⁺] = [A⁻], and [OH⁻] = [BH⁺].
- For weak acids and bases, make the assumption [HA]₀ - x ≈ [HA]₀ and [B]₀ - x ≈ [B]₀.

Weak Acids:

$$K_a = \frac{[x][x]}{[HA]_i - x} \approx \frac{[x][x]}{[HA]_i}$$
 where $[H_3O^+] = x << [HA]_i$

Weak Bases:

$$K_b = \frac{[x][x]}{[B]_i - x} \approx \frac{[x][x]}{[B]_i} \text{ where } [OH^-] = x << [B]_i$$

Percent Ionization

Percent Ionization: percentage of acid molecules that dissolved in water

% Ionization =
$$\frac{molarity \ of \ ionized \ acid}{initial \ molarity \ of \ acid} \times 100 = \frac{[H_3O^+]_{equil}}{[HA]_0} \times 100$$

- The favored direction of the reaction is the one in which the Weaker
- The stronger an acid is, the weaker its conjugate base (and vice versa).
- Diluting an acid (concentration) will T pH and percent ionization.

Practice, practice, practice!

1. Calculate the pH of a 0.020 M solution of hydrochlo

 $HC_zH_3O_z = Weak acid$. 2. Calculate the pH and percent ionization of a 0.020 M solution of acetic acid ($K_a = 1.8 \times 10^{-5}$).

2. Calculate the pH and percent ionization of a 0.020 M solution of acetic acid (
$$K_3 = 1.8 \times 10^{-5}$$
).

$$K_1 = \frac{[H_3 O^+] [C_2 H_3 O_2^-]}{[HC_2 H_3 O_2^-]} = \frac{\chi^2}{[HC_2 H_3 O_2^-]} = \frac{\chi^2}{[HC_2 H_3 O_2^-]} \approx \frac{\chi^2}{0.020} \approx \frac{\chi^2}{0.020} = 1.8 E - 5$$

$$Assume \times (0.020) = 6.0 E - 4 = [H_3 O^+]$$

$$M = \frac{[H_3 O^+] [C_2 H_3 O_2^-]}{[HC_2 H_3 O_2^-]} \approx \frac{[H_3 O^+] [HC_2 H_3 O_2^-]}{[HC_2 H_3 O_2^-]} \approx \frac{[H_3 O_2^-]}{[HC_2 H_3 O_2^-]} \approx \frac{[H_3 O^+] [HC_2 H_3 O_2^-]}{[HC_2 H_3 O_2^-]} \approx \frac{[$$

3. Calculate the pH for a 1.7 x 10⁻² M solution of KOH

4. Calculate the pH and percent ionization for a 1.7 x 10^{-2} M solution of NH₃ ($K_b = 1.8 \times 10^{-5}$).

$$K_{b} = \frac{\text{ENH}_{4}^{+}\text{J}[OH^{-}\text{J}]}{\text{ENH}_{3}\text{J}} = \frac{x^{2}}{\text{ENH}_{3}\text{J}} = \frac{x^{2}}{(17E-2)-x} \approx \frac{x^{2}}{1.7E-2} = 1.8E-5$$

$$= \frac{x^{2}}{1.7E-2} \approx \frac{x^{2}}{1.7E-2} \approx \frac{x^{2}}{1.7E-2} \approx \frac{x^{2}}{1.7E-2} = 1.8E-5$$

$$= \frac{x^{2}}{1.7E-2} \approx \frac{x^{2}}{1.7E$$