Helpful Hints for Drawing Covalent Lewis Dot Structures

	1.	H is always a terminal atom → ALWAYS connected to only other atom.					
	2.	Lowest electronegativity is central atom in molecule.					
	3.	3. If drawing the Lewis structure for a polyatomic ion,					
			s, <u>Subtract</u> electron(s) from the cent	ral atom.			
		b. For negative ion	s, <u>add</u> electron(s) to the central atom.				
		c. Enclose the dot structure in square <u>brackets</u> and include the ion's charge outside to brackets. Not all elements can form double or triple bonds: only C, N, O, P, and S! (Think CNOP-S)					
	4.						
			Exceptions to the octet rule	!			
		1. Elements that will have $\frac{185}{1}$ than 8 valence electrons and are stable.					
	a. <u>Hydrogen</u> , 2 electrons (1 bond) b. <u>Beryllium</u> , 4 electrons (2 bonds)						
c. Boron, 6 electrons (3 bond)							
		 a. Elements in period 4 bonds (can hate) 1. This is one empty 2. If you ar 	more than 8 valence electrons and are od (row) 3 through 7 can often experience up to 12 electrons, 6 bonds) also possible between periods 3 through 7 beautiful of the level. e unsure where to put extra lone pairs, checked octet (check to see if the element is in periods)	cand their octet and can form more than cause they can hold electrons in their cato see if the central atom can have an			
			Sigma (σ) and Pi (π) Bonding	g			
	Sig	1 1	formed by orbitals overlapping end to end. T	he electron density is concentrated			
		<u>between</u> the nucle	el of the two atoms involved in a bond.				
			the nuclei of the two atoms involved				
Bond Type Made of Length / Strength							
		single bond	sigma bond	longest/ weakest			
	double bond <u>l</u> sigma bond + <u>l</u> pi bond medium length/ strength						
		triple bond	sigma bond + 2 pi bonds	shortest/strongest			

54

VSEPR: Memorize Shapes and Bond Angles!

Electron Groups*	Bonding Groups	Lone Pairs	Electron Geometry	Molecular Geometry	Approximate Bond Angles	E	xample
2	2	0	Linear	Linear	180°	$\ddot{0} = c = \ddot{0}$:	• • •
3	3	0	Trigonal planar	Trigonal planar	120°	:;: :;:—B—;:	
3	2	1	Trigonal planar	Bent	≈118°	:ö=s−ö:	•••
4	4	0	Tetrahedral	Tetrahedral	109.5°	HCH	3
4	3	1	Tetrahedral	Trigonal pyramida!	≈107°	н— <mark>й</mark> — н н	3 9∼0
4	2	2	Tetrahedral	Bent	≈105°	н— і —н	3 Po
5	5	0	Trigonal bipyramidal	Trigonal bipyramidal	120° (equatorial) 90° (axial)	:ä :ä: :ä / - ä: :ä / - ä:	
5	4	1	Trigonal bipyramidal	Seesaw	≈118° (equatorial) ≈88° (axial)	:Ë-ë- : :E-ë-ë: ! :E:	
5	3	2	Trigonal bipyramidal	T-shaped	≈86°	: i.: 	
5	2	3	Trigonal bipyramidal	Linear	180°	: <u>F</u> — xe — F:	•
6	6	0	Octahedral	Octahedral	90°	: <u>;;</u> ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	
6	5	1	Octahedral	Square pyramidal	≈88°	: ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	
6	4	2	Octahedral	Square planar	90°	:F: 	

Hybridization

Hybrid Orbitals: orbitals of equal energy created by <u>blending</u> two or more valence orbitals on the same atom
 Hybridization can be determined by counting regions of <u>electron</u> density: electron domains!

# of Electron Domains	# of Hybrid Orbitals	Electron Geometry	Hybridization	
2	2	Linear	sp	
3	3	Trigonal planar	sp²	
4	4	Tetrahedral	sp ³	
5	- 5	_ Trigonal bipyramidal	sp ³ d	- Not
-6	6	Octahedral	sp3d2	AP tested

Isomers vs Resonance Hybrids

isomers vs resonance riyones					
Isomers: molecules with the Same molecular formula but different spatial arrangement of atoms					
Same of atoms of each element					
Different <u>accangement</u> of their atoms in space					
Different physical <u>properties</u> (boiling point, viscosity, etc) depending on their <u>IMFs</u> !					
Resonance structures: when $\pm wo$ or more Lewis structures can validly represent a molecule (or ion)					
· Same position of atoms in space (+ Same # of atoms)					
Different electron arrangement					
 The actual structure, the resonance hybrid, is <u>intermediate</u> between the two or more resonance structures. 					
 All possible dot structures contribute to the real structure, BUT more stable ones (formal charge) contribute more. 					
o Resonance often occurs in structures with a double or triple bond.					
Formal Charge					
Formal Charge: a way to identify the best Lewis dot structure when more than one valid dot structure exists					
Formal charges are hypothetical charges assigned to each element in the dot structure					
Formal Charge = # of valence electrons - # non-bonding electrons (lone) - ½ # bonding electrons					
You do NOT need to show work for formal charge calculations!!!					
Formal Charge Rules (Which dot structure is best?)					
 Small (or even better,) formal charges are more stable. 					
2) formal charge on the electronegative atoms.					
3) + formal charge on the less electronegative atoms.					

4) Sum of all formal charges must <u>equal</u> the charge of the molecule.