Totally Epic AP Chem Review: Bonding and IMFs in a Day!

Chemical bonds: forces of attraction that hold groups of atoms together	Within	a molecule or
crystal lattice and make them function as a unit		_
· ·		

Remember, nature is striving for a <u>lower</u> energy state!

Ionic

Characteristics of ionic substance usually include:

- Electrons are transferred between atoms having \lambda a cae differences in electronegativity
- Often contain a metal and a non-metal
- Strong Coulombic attractions between + and ions
- Formulas are given in the simplest ratios of elements (empirical formula; NaCl, MgCl₂)
- Solids __at room temperature
- Form a crystal lattice structure as pictured to the right
- Melt at high temperatures
- Good conductors of electricity in the molten (I) or dissolved (aq) state

Covalent

Characteristics of covalent substance usually include:

- Electrons are shared between atoms having Small differences in electronegativity
- Non-metals attracted to other non-metals
- Formulas are given in the true ratios of elements (molecular formula; C₆H₁₂O₆)
- May exist in Any state of matter at room temperature (solid, liquid, or gas)
- . Melt at low temperatures (held together by IMFs) Separate molecules
- Do NOT conduct electricity (EXCEPT strong acids!)

 when (s) or (ag)

 when (s)

Metallic

Characteristics of metallic substance usually include:

- Substances that are metals
- A <u>Sea</u> of delocalized, <u>mobile</u> electrons surrounding a positively charged metal center
- An attraction between metal ions and surrounding atoms electrons
- Formulas are written as a neutral atom (Mg, Pb)
- Soli d with a crystalline structure at room temperature
- Range of melting points usually depending on the number of valence electrons
- Excellent conductors of electricity since electrons in the "sea" are free to move

Most chemical bonds are in fact somewhere between purely ionic and purely covalent.

DRAW THE DANG LEWIS DOT STRUCTURE

when answering bonding multiple choice or free response questions.

Alloys: similar in structure to pure metal solids, but contain More than one type of element.

There are two types of alloys that are AP tested!

Substitutional Alloys

Form between atoms of Similar size, where one atom substitutes for the other in the lattice.

- Similar properties to component atoms
- malleable and ductile

Interstitial Alloys

Form between atoms of <u>different</u> size, where the smaller atoms fill the interstitial spaces (lattice holes) between the larger atoms.

- Properties change!!
- · More brittle, harder
- Less malleable and ductile

IONIC BONDS: All about Coulomb's Law

When answering questions about ionic bond strength, justify your response using Coulomb's Law:

$$Lattice\ Energy = k(\frac{Q_1Q_2}{d})$$

Use Coulomb's Law to justify melting point, solubility, and lattice energy differences between two ionic compounds.

→ The more highly charged the ions OR the Smaller the ions, the GREATER the attraction!

Lattice energy: energy released when the solid crystal forms from separate ions in the gas phase

- Directly dependent on size of charges
- Inversely dependent on distance between ions
- Ion charge is generally MOCE important than ion size

Greater lattice energy = <u>Mof (</u> energy required to separate ions

- > Stronger ionic bond
- → <u>↑</u> melting point
- → solubility (ions must separate/dissociate from one another and attach to water to dissolve)

Percent Ionic Character:

- The greater the difference in <u>electronegativity</u> between two bonded atoms, the greater the <u>ionic</u> character of the bond.
- The more <u>Similar</u> in electronegativity, the greater the <u>covalent character</u> of the bond.

Dipole moment: a measure of bond polarity; 1 dipole moment means 1 ionic character!

$$\stackrel{\longleftarrow}{H} \stackrel{\rightarrow}{F} \quad or \quad \stackrel{\delta^+}{H} \stackrel{\delta^-}{F}$$

→ Represented by an arrow pointing in the direction of greater electron density

COVALENT BONDS

Bond length: the distance two covalently bonded atoms at their <u>lowest</u> potential energy. It is a balance between opposing forces:

- · Attractive electrostatic forces between the nucleus of one atom and the electrons of another
- Repulsive forces between the two positively charged nuclei

Bond Order: the humber of chemical bonds between a pair of atoms; indicates the stability of a bond.

Bond Type	Bond Order	Bond Length	Bond Strength
Single bond		longer	weaker
Double bond	2	medium	medium
Triple bond	3	shorter	stronger

Higher Bond Order: ↑ electron density, ↓ nucleus-nucleus repulsion, ↑ electron-nuclei attraction

→ multiple bonds ↑ bond strength and ↓ bond length!