

- 3. Consider two containers of volume 1.0 L at 298 K, as shown above. One container holds 0.10 mol $N_2(g)$ and the other holds 0.10 mol $H_2(g)$. The average kinetic energy of the $N_2(g)$ molecules is 6.2 x 10^{-21} J. Assume that the $N_2(g)$ and the $H_2(g)$ exhibit ideal behavior.
 - a. Is the pressure in the container holding the $H_2(g)$ less than, greater than, or equal to the pressure in the container holding the $N_2(g)$? Justify your answer. (2 points)
 - b. What is the average kinetic energy of the H₂(g) molecules? (1 point)
 - c. The molecules of which gas, N2 or H2, have the greater average speed? Justify your answer. (1 point)
 - d. What change could be made that would decrease the average kinetic energy of the molecules in the container? (1 point)
 - e. If the volume of the container holding the $H_2(g)$ was decreased to 0.50 L at 298 K, what would be the change in each of the following variables? In each case, justify your answer.
 - i. The pressure within the container (2 points)
 - ii. The average speed of the H₂(g) molecules (1 point)

(2pt) (a) Equal, ble there are an equal # moles of both gases at the 7 (1pt)
(Ipt) Same temp, + volume
(1pt) (b) 6.2×10-21 J (the same as Nz) blc both gases are at the same temp.
(1pt) (c) Hz molecules have greater average Speed, blc KE = 12mv2 and
thus at the same temp. the molecules w/ the lowest molar mass (Hz)
W/ have the greater average speed
(1pt) (d) Since average kinetic energy of a gas depends on depends on temperature.
lowering temperature of the gas sample would lower its kinetic energy.
(2pt) (e)(i) pressure doubles! (1pt)
P.V.=P.V. = P. (=V.) = P. = P. (=) = P. (1pt)
(1pt) (ii) Unchanged since average speed depends on the value of
temperature, not volume.