Class Period: _____

RRHS AP Chemistry

<u>Unit 7</u>: Intro Equilibrium

Table of Contents

Content	Page Number(s)
Intro Resources	1 - 5
Unit 7 Objectives	6
Equilibrium Basics	7 – 10
Manipulating Reactions and K vs Q	11 - 14
Le Châtelier's Principle	15 – 26
Intro to RICE Tables	27 – 29
RICE Table Approximations	30 - 35
Everything but the Kitchen Sink Equilibria (mixed content review)	36 - 39
Solubility Equilibrium : Intro to Ksp	40 - 42
How much will dissolve?	43 - 44
Solubility Lab	45 - 48
Common Ion Effect	49 - 52
Precipitation: Q vs K	53 – 56
Solubility Summary Sheet	57
Unit 7 Multiple Choice Practice	58 - 60
Unit 7 Free Response Practice	61 - 71
Scratch (blank) paper	72 – 74
Polyatomic Ions Lists	75 – 76
Complete Periodic Table (with element names!)	77
AP Chemistry Formula Chart	78 – 79

Class Info

Website: magicalchemists.weebly.com/ap-chemistry.html Email Address: kristina_lestik@roundrockisd.org Remind Info:

> A Day: Text **@APLestikA** to **81010** B Day: Text **@APLestikB** to **81010**

> > **Mastering Chemistry** (Pearson textbook/homework)

https://www.pearsonmylabandmastering.com/northamerica/masteringchemistry/ You will need to get your course ID and access code from your teacher!

Ζ
Έ
щ
ΓT
E
Ľ.
0
[-1
V
C
Ϊ
$\overline{\mathbf{O}}$
Ĭ
2
Ē

18	2	He	4.00	Π	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Хе	131.29	86	Rn	(222)										
		17		لا	Ľ.	19.00	17	CI	35.45	35	Br	79.90	53	Ι	126.91	85	At	(210)				Ĭ	1/	Lu	174.97	103	Lr	(262)
		16		α	0	16.00	16	S	32.06	34	Se	78.96	52	Te	127.60	84	Po	(209)				c t	0/	Чb	173.04	102	No	(259)
		т Т		/	Ζ	14.01	15	Ρ	30.97	33	As	74.92	51	Sb	121.75	83	Bi	208.98				¢,	69	Tm	168.93	101	Мd	(258)
		14	•	٥	U	12.01	14	Si	28.09	32	Ge	72.59	50	Sn	118.71	82	Рb	207.2				¢,	68	Er	167.26	100	Fm	(257)
		13		n	B	10.81	13	AI	26.98	31	Ga	69.72	49	In	114.82	81	TI	204.38				ŗ	/9	Но	164.93	66	Es	(252)
								0	12	30	Zn	65.39	48	Cd	112.41	80	Hg	200.59				(99	Dy	162.5	98	Cf	(251)
									11	29	Cu	63.55	47	Ag	107.87	62	Au	196.97	111	Rg	(272)	Ĺ	ر ه	Tb	158.93	67	Bk	(247)
									10	28	Ni	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	(271)	Ì	64	Gd	157.25	96	Cm	(247)
								Ċ	у	27	Co	58.93	45	Rh	102.91	77	Ir	192.2	109	Mt	(268)	ç	63	Eu	151.97	95	Am	(243)
								Ċ	8	26	Fe	55.85	44	Ru	101.10	76	0s	190.2	108	Hs	(277)	ç	79	Sm	150.4	94	Pu	(244)
								t	/.	25	Mn	54.94	43	Tc	(86)	75	Re	186.21	107	Bh	(264)	Ţ	19	Pm	(145)	93	Np	(237)
								Ň	9	24	Cr	52.00	42	Mo	95.94	74	M	183.85	106	Sg	(266)	¢,	60	ΡN	144.24	92	n	238.03
								ı	ç	23	Λ	50.94	41	ЧN	92.91	73	Ta	180.95	105	Db	(262)	C L	9d	\mathbf{Pr}	140.91	91	Pa	231.04
								•	4	22	Ti	47.90	40	Zr	91.22	72	Hf	178.49	104	Rf	(261)	C L	58 8	Ce	140.12	06	Th	232.04
			_					c	S	21	Sc	44.96	39	Υ	88.91	57	*La	138.91	68	†Ac	227.03			Series			ries	
		c	1	4	Be	9.01	12	Mg	24.30	20	Ca	40.08	38	Sr	87.62	56	Ba	137.33	88	Ra	226.02			thanide S			ctinide Se	
1	1	Η	1.008	n	Li	6.94	11	Na	22.99	19	K	39.10	37	Rb	85.47	55	Cs	132.91	87	Fr	(223)			*Lan			ţΑι	

	Saturday	15	22	2 67	2	12	19
er 2022	Friday	14 C End of 1st MP	21 A	28 A	4 B	11 A	18 B
r-Decemb	Thursday	13 B	20 B	27 B	3 A	10 B	17 A
d: Octobe	Wednesday	12 PSAT	19 A	26 A	8 B	9 A	16 B
ing Period	Tuesday	11 A	18 B	25 B	1 Nov. A	8 8	15 A
2 nd Mark	Monday	10 Student Holiday/ Staff Development	17 A	24 Student Holiday/ Staff Development	31 B	7 A	14 B
	Sunday	9 Oct.	16	23	30	6	13

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
20 Nov	21 FALL BREAK	22 FALL BREAK	23 FALL BREAK	24 FALL BREAK	25 FALL BREAK	26
27	28 A	29 B	30 A	1 Dec. B	2 A	ę
4	B	6 A	7 B	8 8	9 B	0 3
<u>[</u>	12 Exams 2, 1	13 Exams 6, 5	14 Exams 3, 4	15 Exams 7, 8	16 BREAK BEGINS!	17
18	19 WINTER	20 BREAK	21 WINTER	22 BREAK	23 ©	24
25	26 ©	27 WINTER	28 BREAK	29 WINTER	30 BREAK	31

AP® CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

L, mL = liter(s), milliliter(s) g = gram(s) nm = nanometer(s) atm = atmosphere(s)	$\begin{array}{rcl}mm \ Hg &=& millimeters \ of \ mercury\\ J, \ kJ &=& joule(s), \ kilojoule(s)\\ V &=& volt(s)\\ mol &=& mole(s)\end{array}$
ATOMIC STRUCTURE $E = hv$ $c = \lambda v$	$E = \text{energy}$ $\nu = \text{frequency}$ $\lambda = \text{wavelength}$ Planck's constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Avogadro's number $= 6.022 \times 10^{23} \text{ mol}^{-1}$ Electron charge, $e = -1.602 \times 10^{-19}$ coulomb
EQUILIBRIUM $K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, \text{ where } a \text{ A} + b \text{ B} \rightleftharpoons c \text{ C} + d \text{ D}$ $K_{p} = \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$ $K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$ $K_{b} = \frac{[OH^{-}][HB^{+}]}{[B]}$ $K_{w} = [H^{+}][OH^{-}] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$ $= K_{a} \times K_{b}$ $p\text{H} = -\log[H^{+}], \text{ pOH} = -\log[OH^{-}]$ $14 = p\text{H} + p\text{OH}$ $p\text{H} = pK_{a} + \log\frac{[A^{-}]}{[HA]}$ $pK_{a} = -\log K_{a}, pK_{b} = -\log K_{b}$	Equilibrium Constants K_c (molar concentrations) K_p (gas pressures) K_a (weak acid) K_b (weak base) K_w (water)
KINETICS $\ln[A]_{t} - \ln[A]_{0} = -kt$ $\frac{1}{[A]_{t}} - \frac{1}{[A]_{0}} = kt$ $t_{1/2} = \frac{0.693}{k}$	k = rate constant t = time $t_{1/2} = \text{half-life}$

GASES, LIQUIDS, AND SOLUTIONS	P = pressure
	V = volume
PV = nRT	T = temperature
D D V V where V moles A	n = number of moles
$P_A = P_{\text{total}} \times X_A$, where $X_A = \frac{1}{\text{total moles}}$	m = mass
$P_{\text{reg}} = P_{\text{A}} + P_{\text{D}} + P_{\text{C}} + \dots$	M = molar mass
Total A B C C	D = density
$n = \frac{m}{M}$	KE = kinetic energy
	v = velocity
$K = {}^{3}C + 2/3$	A = absorbance
$D = \frac{m}{m}$	a = molar absorptivity
- V	b = path length
KE per molecule = $\frac{1}{2}mv^2$	c = concentration
Molarity, $M =$ moles of solute per liter of solution	Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{K}^{-1}$
$\Lambda = abc$	$= 0.08206 \text{ L} \text{ atm mol}^{-1} \text{ K}^{-1}$
A = uvc	$= 62.36 \text{ L torr mol}^{-1} \text{ K}^{-1}$
	1 atm = 760 mm Hg = 760 torr
	STP = 273.15 K and 1.0 atm
	Ideal gas at STP = 22.4 L mol^{-1}
THERMODYNAMICS/ELECTROCHEMISTRY	a — bast
	q = mean
$q = mc\Delta T$	m = mass
$\Delta S^{\circ} = \sum S^{\circ}$ products $-\sum S^{\circ}$ reactants	T = temperature
	$S^{\circ} = \text{standard entropy}$
$\Delta H^{\circ} = \sum \Delta H_f^{\circ}$ products $-\sum \Delta H_f^{\circ}$ reactants	$H^{\circ} = \text{standard enthalpy}$
$A = C^0$ $\sum A = C^0$ and the state $\sum A = C^0$ and the state	G° = standard Gibbs free energy
$\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products} - \sum \Delta G_{f}^{\circ} \text{ reactants}$	n = number of moles
	E° = standard reduction potential
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	I = current(amperes)
$= -RT \ln K$	q = charge (coulombs)
$= -nFE^{\circ}$	t = time (seconds)
$I = \frac{q}{t}$	Faraday's constant, $F = 96,485$ coulombs per mole of electrons
	$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$

1 AP Chem: Effective Study Skills Tips and Tricks! Study smarter, not harder. ⁽²⁾

What to Do	What NOT to Do
 Be <u>ACTIVE</u> in while learning/studying: Close your booklet and try problems on your own with just a periodic table and formula chart! Only check your answer/work when you've finished, or you can't go any farther. Use flashcards (physical or digital) Struggle with challenging problems and keep trying, even if you're stuck initially (or convinced you're doing it wrong) 	 Be passive while learning/studying: Re-read over your booklet and practice problems you've already completed Ask your friend or look up the answer if you don't immediately know how to do the problem
 Focus when studying Decrease distractions while studying; don't read texts, check social media, or watch Netflix while studying. Put your phone out of sight/hearing. 	 Multitask Study while checking/writing texts, checking social media, and/or watching Netflix. Keep your computer or tv on in the background
 Use <u>Intensity</u> when studying You control the effort that you apply in your work! 30 minutes of high focus, high intensity study can be better than 2 hours of unfocused, low energy multi-tasking. 	 Low intensity/low effort Look over problems and try them "in your head" but then just look up the answer Use flashcards but don't try to recall the info on the other side before looking at the answer
 Space out studying over time Study a little bit of chemistry most days Start long-term homework (like Mastering Chem or lab reports) the day they're assigned, and work a little bit every day or two Less is more! Spaced practice studying is more effective than LONG hours of "studying" with multitasking and little focus. 	Cram Only study for quizzes/tests the night before Start Mastering Chem or your lab report only 1-2 days before it's due Study for many hours at a time all at once
 Interleave your Studying Study more than just one type of problem; mix it up and jump between different concepts Review and practice old units while studying (especially important since AP Chem assessments are cumulative!) 	 One Concept Studying Study only one type of problem, and practice those problems over and over Don't review older content or units while studying
 The best way to prepare for a test is to take a test! Time yourself while trying practice problems Access only the AP Periodic Table and Formula Chart when practicing problems 	 Use your notes, friends, and/or the internet while trying practice problems Give yourself unlimited time for each problem

6 AP Chemistry Big Ideas

BIG IDEA 6 - Any bond or intermolecular attraction that can be formed can be broken. These processes are in a dynamic competition, sensitive to initial conditions and external perturbations.

- <u>Enduring Understanding 6.A</u>: Chemical equilibrium is a dynamic, reversible state in which rates of opposing processes are equal.
- <u>Enduring Understanding 6.B</u>: Systems at equilibrium are responsive to external perturbations, with the response leading to a change in the composition of the system.
- <u>Enduring Understanding 6.C</u>: Chemical equilibrium plays an important role in acid-base chemistry and solubility.
- <u>Enduring Understanding 6.D</u>: The equilibrium constant is related to temperature and the difference in Gibbs free energy between reactants and products.

Equilibrium: Let's Get Balanced!

Dynamic Equilibrium: A Quick Review

- 1. The concentrations of all reactants and products remain ______ with time.
- 2. The reaction is proceeding in the forward <u>and</u> reverse direction simultaneously and at the ______ rate.
- **3.** All macroscopic variables (such as concentration, partial pressure, and temperature) do ______ change over time, so nothing ______ to be happening.
- **4.** When equilibrium has been reached, ____ = K.
- 5. <u>Equilibrium is temperature dependent</u>! Change the temperature, change ______ of products to reactants.

The Equilibrium Constant, *K* (the Law of Mass Action): relates the concentrations of reactants and products at equilibrium at a given temperature.

For the general reaction: $aA + bB \Leftrightarrow cC + dD$

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} = \frac{[Products]^{coefficient}}{[Reactants]^{coefficient}}$$

- Each concentration is raised to the power of its stoichiometric coefficient in the balanced equation.
- <u>Note</u>: Only use ______ and _____ substances (NO solids or pure liquids!)
- There are NO ______ for the equilibrium constant, *K* (they cancel out).

Let's Practice!

1. The decomposition of aqueous $Ca(HCO_3)_2$ is allowed to come to equilbrium at 298 K. The measured equilibrium concentrations are $[Ca(HCO_3)_2] = 0.025$ M and $[CO_2] = 2.78$ M. What is the value of the equilibrium constant at this temperature?

$$Ca(HCO_3)_2(aq) \rightleftharpoons CaCO_3(s) + H_2O(I) + CO_2(g)$$

2. Consider the following reaction:

 $2 \operatorname{COF}_2(g) \rightleftharpoons \operatorname{CO}_2(g) + \operatorname{CF}_4(g)$ $K_c = 2.00 \text{ at } 1000^{\circ}\text{C}$

In an equilibrium mixture, the concentration of COF_2 is 0.255 M and the concentration of CF_4 is 0.118 M. What is the equilibrium concentration of CO_2 ?

The equilibrium constant, K, tells you:

the ratio of products to reactants when a given reaction reaches its ______ free energy state and "stops".

Large K Intermediate K Small K *K* >> 1 $K \approx 1$ *K* << 1 Product-favored Neither **Reactant-Favored** 0000 000000 ***** 0000 •• 000000 **** 0000 000000 00000 000000 ***** Products Reactants Reactants Products Reactants Products Significant amounts Mostly products Mostly reactants of reactants and products Forward reaction is Reverse reaction is thermodynamically favorable thermodynamically favorable (b) (a) direction of Globs energy, G Equilibrium reaction Gibbs energy, G Gibbs energy, G Equilibrium 6 Equilibrium Pure Pure Pure Pure Pure Pure products products reactants reactants products reactants

9 Completion Reactions vs Equilibrium Reactions

You can think of K as measuring how close a reaction will go towards 100% completion:

Example: combustion

- High K = reaction came pretty close to completely turning reactants into products
- Low K = reaction did NOT come close to turning all reactants into products, mostly reactants just hung around

reached

Example: weak acid dissolution

Kinetic Control: when a reaction is thermodynamically favorable (K > 1), but products form sooooooo slowly that it appears the reaction isn't happening (i.e., kinetically unfavorable)

<u>Example Question</u>: For a given reaction $A \rightleftharpoons B$, $\Delta H = -2.3$ kJ/mol and $\Delta S = +25.9$ J/mol K. A student tries the reaction in lab, letting the reaction run over time. After two days. she measures the composition of her sample and discovers that it is primarily composed of reactants. Which of the following best explains why this might occur?

- a. This reaction is only thermodynamically favorable at low temperatures, and the student's lab must be too warm for the reaction to occur.
- b. This reaction has a small equilibrium constant, *K*, and thus the [reactants] will be much greater than [products] when the reaction system reaches its most stable state.
- c. This reaction has an extremely high activation energy, and thus the reaction rate is so slow no products will be observed despite its thermodynamic favorability.
- d. This reaction is only thermodynamically favorable at high temperatures, therefore the lab conditions are too cold for the reaction to occur in measurably quantities.

In order to convey additional information, the equilibrium constant *K* may also have a _______ to give information about the type of reaction being studied.

However, in ______ cases K is still defined as the ratio of products to reactants!

Type of Reaction		Reaction	Equilibrium Expression, K
General	K _{eq}		$[C]^{c}[D]^{d}$
Concentration	K _c	$aA + bB \rightleftharpoons cC + dD$	$K = \frac{1}{[A]^a [B]^b}$
Pressure (only for gases!)	K _p	$aA(g) + bB(g) \Leftrightarrow cC(g) + dD(g)$	$K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b}$
Dissolving a solid in water	K _{sp}	$AB(s) \Leftrightarrow A^+(aq) + B^-(aq)$	$K_{sp} = [A^+][B^-]$

K_p = Ratio of Partial Pressures

For the general reaction: $aA + bB \rightleftharpoons cC + dD$

$$K_p = \frac{(P_C)^c (P_D)^d}{(P_A)^a (P_B)^b} = \frac{(P_{products})^{coefficient}}{(P_{reactants})^{coefficient}} \quad \text{where P is the partial pressure of the gas}$$

*Note: K_c can be converted into K_p, but that conversion is no longer AP tested! ;D

Let's Practice!

1. Given the following reaction, with $K_p = 109$ at 25°C: 2 NO(g) + Br₂(g) \rightleftharpoons 2 NOBr(g)

If the equilibrium partial pressure of bromine gas is 0.0159 atm and the equilibrium partial pressure of NOBr is 0.0768, calculate the equilibrium partial pressure of NO:

2. The reaction for the formation of nitrosyl chloride: $2 \text{ NO}(g) + Cl_2(g) \rightleftharpoons 2 \text{ NOCl}(g)$ was studied at 25°C. The pressures at equilibrium were found to be $P_{\text{NOCl}} = 1.2$ atm, $P_{\text{NO}} = 0.050$ atm and $P_{\text{Cl}2} = 0.30$ atm. Write the equilibrium expression, K_p , for this reaction and calculate its value at 25°C.

Manipulating Reactions and the Effect on K

1. <u>Stoichiometric Coefficients</u>: If you _______ the coefficients in the equation by a factor,

______ the equilibrium constant to the same factor to get the equilibrium constant for the reaction.

$2 X + Y \leftrightarrow 2 Z$	K
$X + \frac{1}{2}Y \leftrightarrow Z$	$K^{\frac{1}{2}}$
$4 X + 2 Y \leftrightarrow 4 Z$	K^2

<u>Reversing Equations</u>: When the equation is written in ______, take the ______, take the ______, take the ______.
 of K to get the equilibrium constant for the reaction.

$$2X + Y \leftrightarrow 2Z \qquad K$$

$$2Z \leftrightarrow 2X + Y \qquad \frac{1}{K}$$

Adding Equations: If you ______ two or more chemical equations to get the overall reaction (like in Hess's Law), ______ the respective K's to get the equilibrium constant for the reaction.

$$K_{total} = K_1 \times K_2 \times K_3 \dots$$

Let's Practice!

1. The Haber Process is a famous industrial method for producing ammonia from nitrogen and hydrogen gases:

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ $K_c = 3.8 \times 10^4 \text{ at } 127^{\circ}C$

a. Calculate the value of the equilibrium constant, K_c , at 127°C for the reaction: 2 NH₃(g) \Rightarrow N₂(g) + 3 H₂(g)

b. Calculate the value of K_c at 127°C for this reaction: $\frac{1}{2} N_2(g) + 3/2 H_2(g) \rightleftharpoons NH_3(g)$

c. Calculate the value of K_c at 127°C for this reaction: $6 \text{ NH}_3(g) \rightleftharpoons 3 \text{ N}_2(g) + 9 \text{ H}_2(g)$

THE REACTION QUOTIENT, Q: When you need to know the answer to the question, "Is the system at equilibrium?"

A: The answer can be _____ or ____!

For the general reaction: $aA + bB \rightleftharpoons cC + dD$

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \text{ or } \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$$

Reminder:

- Q has the appearance of K (same exact ratio!)
- But... Q can be calculated at _____ point in the reaction progress, not only at equilibrium!

What does Q mean?

- 1. If *K* _____ *Q*, system not at equilibrium: forward reaction is favored (shift right) to make Q = K.
- 2. If *K* _____ *Q*, the system is at equilibrium.
- 3. If *K* _____ *Q*, system not at equilibrium: reverse reaction is favored (shift left) to make Q = K.

The Kinetics of Equilbrium

- 1. If equilibrium is approached from the left (starting with _____),
 - a. the rate of the <u>forward</u> reaction _____ to a constant, non-zero rate (i.e. it slows down over time until equilibrium is reached).
 - b. the rate of the <u>reverse</u> reaction _____ to a constant, non-zero rate (i.e. it speeds up over time until equilibrium is reached).
- 2. If equilibrium is approached from the right (starting with _____),
 - a. the rate of the <u>forward</u> reaction _____ to a constant, non-zero rate (i.e. it speeds up over time until equilibrium is reached).
 - b. the rate of the <u>reverse</u> reaction _____ to a constant, non-zero rate (i.e. it slows down over time until equilibrium is reached).
- 3. Time required to reach equilibrium does ______ depend on the equilibrium constant, *K*!
- 4. Regardless of initial conditions, at a given ______ a reaction will reach equilibrium with the same ratio of products to reactants.

In Summary

Current conditions	K > Q	<i>K</i> ≈ <i>Q</i>	K < Q
change needed for system to reach equilibrium	shift right (make more products)	already at equilibrium	shift left (make more reactants
reaction rates	forward > reverse reaction rate (until equilibrium reached)	forward ≈ reverse reaction rate	forward < reverse reaction rate (until equilibrium reached)

Thermodynamics:

- Will a reaction happen spontaneously?
- Determined by ΔG (i.e., combo of ΔH and ΔS)

Kinetics:

- How fast will a reaction happen?
- Determined by activation energy, E_a, and temperature

Equilibrium vs Kinetics: k vs K!

Equilibrium	Kinetics						
K = equilibrium constant	<i>k</i> = constant						
What we <u>can</u> determine about <i>k</i> using <i>K</i> :							
• Relative rates of forward and reverse reactions (by comparing K vs Q)							
What we can't determine about <i>k</i> using <i>K</i> :							
Absolute rates of forward and reverse reactions							
You CANNOT compare the rate of one reaction to another by comparing their K values!							

- For the synthesis of ammonia at 500°C, N₂(g) + 3 H₂(g) = 2 NH₃(g), the equilibrium constant is 6.0 × 10⁻². Predict the direction in which direction the system will shift to reach equilibrium if [NH₃] initial = 1.0 × 10⁻⁴ M, [N₂] initial = 5.0 M, and [H₂] initial = 1.0 × 10⁻² M at 500°C.

3. The equilibrium partial pressure of Br_2 is 4.00 atm and that of NOBr is 8.00 atm.

 $2 \text{ NO}(g) + \text{Br}_2(g) \leftrightarrow 2 \text{ NOBr}(g)$ $K_p = 100$

Using the equation above, determine the equilibrium partial pressure of nitrogen monoxide, NO, at equilibrium.

- a. 0.400 atm b. 0.566 atm c. 1.77 atm d. 5.83 atm
- 4. The value of the equilibrium constant, K_c , at 25°C is 8.1 for the following reaction: 2 SO₃(g) \rightleftharpoons 2 SO₂(g) + O₂(g). What must happen for the reaction to reach equilibrium if the initial concentrations of all three species was 2.0 M?
 - a. The rate of the forward reaction would increase, and $[SO_3]$ would decrease.
 - b. The rate of the reverse reaction would increase, and $[SO_2]$ would decrease.
 - c. Both the rate of the forward and reverse reactions would increase, and the value for the equilibrium constant would also increase.
 - d. No change would occur in either the rate of reaction or the concentrations of any of the species.
- 5. For the reaction 2 X(g) + Y(g) \leftrightarrow 2 Z(g), K_c = 4.0 x 10⁴. Determine the value of the equilibrium constant, K_c, for the following reaction:

$$2 Z (g) \leftrightarrow 2 X(g) + Y(g)$$
 $K_c = ??$

a. 2.5×10^{-5} b. 2.5×10^{-4} c. 4.0×10^{-5} d. 4.0×10^{-4}

¹⁵ Le Châtelier's Principle

If a "stress" (_____) is applied to a system at equilibrium,

equilibrium will shift in the direction that will partially relieve that stress.

Nothing can ever completely reverse the effects of stress! (Tell me about it, am I right?; P)

Changes in Concentration

- Increasing the concentration of a reactant causes system to shift right to make more ______.
- Increasing the concentration of a product causes system to shift left to form more

A change in concentration of reactants or products will ______ affect the value of *K*.

$A(aq) + B(aq) \rightleftharpoons C(aq) + D(aq)$

Stress	Effect	Stress	Effect
	reaction will shift		reaction will shift
Add A or B	Add A or B Add C or D Add C or D		to make more
	reaction will shift		reaction will shift
Remove A or B	to make more	Remove C or D	to make more

Example: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

What will happen to the equilibrium system above when the following stresses are applied?

Stress	Effect	Stress	Effect
	reaction will shift		reaction will shift
Add N ₂	to make more	Add H ₂	to make more
	reaction will shift	Remove NH-	reaction will shift
	to make more	Nemove Will	to make more

Changes in Temperature

Changes in temperature may easily be treated as changes in concentration if you think of heat as a reactant (endothermic reaction) or product (exothermic reaction).

Let's Practice!

1. Given the reaction: $2 SO_3(g) \rightleftharpoons O_2(g) + 2 SO_2(g) + 32.5 kJ$

What will happen to the equilibrium system above when the following stresses are applied?

Stress	Effect on Reaction System	Effect on K
Decrease the temperature	reaction will shift to make more	The value of K will:
Add SO₃	reaction will shift to make more	The value of K will:
Increase the temperature	reaction will shift to make more	The value of K will:

2. When a certain amount of nitrogen gas and hydrogen gas are placed in a 1.5 L evacuated container and heated to 773 K, ammonia gas, NH₃, is formed according to the following equation: N₂(g) + H₂(g) ≠ 2 NH₃(g). When equilibrium is established, 0.565 mol of NH₃(g) is present in the flask. When the same reaction is carried out at 298 K, the number of moles of NH₃(g) is much larger than 0.565 mol. Is the forward reaction endothermic or exothermic? Justify your answer.

17 Oh Shift: Le Châtelier and Rate of Reaction

A shift to the left or right does **NOT** say anything about the ______ of the reaction!

For example, consider the reaction: $A + B \rightleftharpoons C + heat$

If the temperature of this system was increased, equilibrium would shift to the left. This does ______ mean that the rate will be slower! It simply means that a new equilibrium will be reached which has more A and B and less C.

Increasing temperature causes equilibrium to be reached more ______ (regardless of shift!)

Changes in Pressure

Changes in pressure only affect equilibrium systems that have ______ reactants and/or products.

- <u>Increasing the pressure</u> of a gaseous system causes system to shift to the side with ______ gas particles.
- <u>Decreasing the pressure</u> of a gaseous system causes system to shift to the side with ______ gas particles.
- If system has the ______ number of moles of gas on both sides, changes in pressure have _____ effect.
- Adding an inert gas does ______ affect the location of equilibrium, since the partial pressures of the gases in the reaction are not affected.

<u>Changes in Volume</u>: The opposite of changes in pressure.

- <u>Increasing the volume</u> of a gaseous system causes system to shift to the side with ______ gas particles.
- <u>Decreasing the volume</u> of a gaseous system causes system to shift to the side with ______ gas particles.

A change in pressure or volume will ______ affect the value of *K*.

Addition of a Catalyst: No effect on equilibrium position!

- Adding a catalyst increases the rate of both the forward and reverse reaction ______.
- Equilibrium will be reached more quickly. ;D

Example: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$

What will happen to the equilibrium system above when the following stresses are applied?

Stress	Effect	Stress	Effect
Increase	reaction will shift	Ar(g) added	reaction will shift
pressure	to make more		to make more
Increase	reaction will shift	Decrease	reaction will shift
volume	to make more	pressure	to make more

Let's Practice!

Consider the following equilibrium equation:

$$Ca(HCO_3)_2(aq) \rightleftharpoons CaCO_3(s) + H_2O(l) + CO_2(g)$$
 $\Delta H_{rxn} = +2.1 \text{ kJ/mol}$

A vessel contains $Ca(HCO_3)_2$, $CaCO_3(s)$, $NO_2(g)$, $H_2O(I)$, and $CO_2(g)$ at equilibrium. Predict how each of the following stresses will affect the variables specified.

Stress	Shift?	Effect on K?	Other Effect
CO ₂ is added.			The <u>concentration</u> of Ca(HCO ₃) ₂ will:
CaCO₃ is removed.			The <u>concentration</u> of CO ₂ will:
The volume is halved.			The <u>amount</u> of CaCO₃ will:
He(g) is added.			The <u>amount</u> of Ca(HCO₃)₂ will:
The temperature is decreased.			The <u>concentration</u> of CaCO ₃ will:
The pressure is decreased.			The <u>concentration</u> of CaCO ₃ will:
CaCO₃ is added.			The concentration of $Ca(HCO_3)_2$ will:
A catalyst is added.			The <u>amount</u> of CO ₂ will:
The volume is increased.			The <u>concentration</u> of Ca(HCO ₃) ₂ will:
The temperature is increased.			The <u>amount</u> of CO ₂ will:

19 A Visual Summary of Le Châtelier's Principle

- 1. Identify stress (change) to the system.
- 2. Identify effect of stress on the equilibrium system: shift right, shift left, or no shift?
- 3. Explain how the shift you identified will counteract the original stress to re-establish equilibrium
- 4. Connect your explanation to the question asked (aka, answer the question. ;D)

Example FR Explanations

Example #1: If the temperature of an exothermic reaction changes from 25°C to 50°C, what is the effect on equilibrium constant, K?

- Stress? Increasing temperature
- *Effect of stress?* Shift left (or shift towards reactants)
- Counteract stress? Use up added heat
- Answer question (effect on K): increasing [reactants], decreasing [products] decreases value of K.

<u>Final Answer</u>: Increasing the temperature of an exothermic reaction will cause the system to shift left to use up the added heat and re-establish equilibrium. This shift increases the concentration of reactants and decreases the concentration of products, therefore the value of K decreases.

Example #2: For the reaction $A(g) + B(g) \rightleftharpoons C(g)$, adding more A(g) to the reaction vessel will have what effect on the concentration of B(g)?

- Stress? Adding A(g) = increasing [A], a reactant
- *Effect of stress?* Shift right (or shift towards products)
- Counteract stress? Use up some of the added A(g)
- Answer question (effect on concentration of B): decrease [B], because using up some A to create products also uses up B.

<u>Final Answer</u>: Adding more A(g) will increase the concentration of A, a reactant, and so the system will shift right to use up some of the extra A by making more product. Using up some A to make products will also use up some B, and so the concentration of B will decrease as the system shifts to re-establish equilibrium.

Example #3: For the reaction $A(g) + B(s) \rightleftharpoons C(g)$, removing some B(s) from the reaction container will have what effect on the reaction mixture?

- Stress? No stress occurs: solids are not included in the equilibrium constant expression, K
- Effect of stress? n/a
- Counteract stress? n/a
- Answer question (effect on rxn mixture): no effect on location of equilibrium for the reaction mixture

<u>Final Answer</u>: Removing some B(s) will have no effect, because solids are not included in the equilibrium constant expression, *K*, and thus don't affect the location of equilibrium for the reaction mixture.

Free Response Practice!

1. In the following reaction at chemical equilibrium, what is the effect on the reaction mixture if the volume of the reaction container is decreased? Explain.

 $N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$ $\Delta H^\circ = 181 \text{ kJ}$

2. Consider the following endothermic reaction at chemical equilibrium. When the temperature of the reaction mixture is increased, what is the effect on CaCO₃(s)? Explain.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$

3. Adding additional KCl will have what effect on the reaction mixture, if the mixture was originally at chemical equilibrium? Explain.

 $2 \text{ KClO}_3(s) \rightleftharpoons 2 \text{ KCl}(s) + 3 \text{ O}_2(g)$

22 Quick Review: Equilibrium Graphs

Equilibrium systems can be represented by two different graphs:

b. [Reactants], [Products] vs Time: concentrations of reactants and products are _____, but not necessarily equal.

Le Châtelier's Principle: Interpreting Equilibrium Graphs

1) Applied stress: Change in Concentration

Reminder: Nothing can ever completely undo the stress on the system!

Shifts predicted by Le Châtelier's principle only ______ counteract the stress.

3) Applied stress: Addition of a Catalyst

Use the chemical equilibrium below and the graph above to answer the questions that follow.

 $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$

- 4. How many seconds does it take for the system to reach equilibrium the first time? _____
- 5. Calculate the value of the equilibrium constant at the time identified in #4.

6. Identify a stress to the system that would cause the effects shown at t = 20 s. Explain.

7. If the change at t = 35 s is due to an increase in temperature, is the reaction exothermic or endothermic? Justify your answer.

Use the following information to answer questions 1–3.

The following reaction is found at equilibrium at 25°C: $2 SO_3(g) \rightleftharpoons O_2(g) + 2 SO_2(g)$ $\Delta H = -198 \text{ kJ/mol}$

- 1. Which of the following would cause the reverse reaction to speed up?
 - a. Adding more SO₃
 b. Lowering the temperature
 c. Raising the pressure
 d. Removing some SO₂
- 2. Which of the following would cause a reduction in the value for the equilibrium constant?
 - a. Increasing the amount of SO_3 c. Reducing the amount of O_2
 - b. Raising the temperature d. Lowering the temperature
- 3. If initially only SO₃ was added to the reaction vessel, what is true about the following values as the system approached equilibrium?
 - a. $\Delta G > 0$ and Q > K b. $\Delta G < 0$ and Q > K c. $\Delta G > 0$ and Q < K d. $\Delta G < 0$ and Q < K

Use the following information to answer questions 4–5.

 $CO_2(g) + H_2(g) \rightleftharpoons H_2O(g) + CO(g)$

- 4. Which two stresses will each cause the equilibrium to shift to the left?
 - a. increase [H₂], increase [CO] c. decrease [H₂], increase [H₂O]
 - b. increase [CO₂], decrease [CO] d. decrease [CO₂], decrease [H₂O]
- 5. Which of the following graphs represents the forward rate of reaction when $H_2O_{(g)}$ is added to the above equilibrium at time t = 1 ?

6. Consider the following: $2 SO_3(g) \rightleftharpoons O_2(g) + 2 SO_2(g)$. Initially, SO_3 is added to an empty flask. How do the rate of the forward reaction and $[SO_3]$ change as the reaction proceeds to equilibrium?

	Forward Rate	[SO₃]		Forward Rate	<u>[SO₃]</u>
a.	decreases	increases	с.	increases	increases
b.	decreases	decreases	d.	increases	decreases

- 7. The following reaction is found at equilibrium: $Ni(s) + 4 CO(g) \rightleftharpoons Ni(CO)_4(I)$ $\Delta H = -160.8 \text{ kJ/mol}$ Which of the following will cause this equilibrium to shift to the left?
 - a. add some CO c. decrease the volume
 - b. remove some Ni(CO)₄ d. increase the temperature

8. Consider the following reaction at chemical equilibrium: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$. At time t_1 . heat is applied to the system. Which of the following best describes the equilibrium reaction and the change in K_c ?

- a. exothermic and K_c increases
- b. exothermic and K_c decreases
- c. endothermic and K_c increases
- d. endothermic and K_c decreases
- 9. A galvanic cell is constructed based on the following reaction: Zn(s) + Cu²⁺(aq) → Zn²⁺(aq) + Cu(s). The observed voltage was found to be 0.95 volt instead of the standard cell potential, E°, of 1.10 volts. Which of the following could correctly account for this observation?
 - A. The cell had been running for a period of time.
 - B. The standard free energy of the cell, ΔG° , is negative.
 - C. The Cu^{2+} solution was more concentrated than the Zn^{2+} solution.
 - D. The Zn(s) anode had been reduced in mass.
- 10. Consider the following equilibrium: $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$. Which of the following shows the relationship between concentration and time as a result of adding a catalyst at time t = 1?

- 11. The following reaction is found at equilibrium: $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$. When the volume of the system is decreased, the equilibrium shifts:
 - a. left since the reverse rate is greater than the forward rate.
 - b. left since the forward rate is greater than the reverse rate.
 - c. right since the reverse rate is greater than the forward rate.
 - d. right since the forward rate is greater than the reverse rate.

RICE Tables: Delicious, Delicious Equilibrium

Many equilibrium calculations are solved using ______ tables: this is an organization method used to clearly track what happens as a reaction established equilibrium.

Tasty RICE

- R = Balanced _____
- I = _____ concentrations (or pressures) for each species in the reaction mixture
- **C** = ______ in concentrations (or pressures) for each species as the system moves towards equilibrium: everything changes stoichiometrically!
- E = _____ concentrations (or pressures) of each species when the system reaches equilibrium

Note: If the amounts are given in moles BE WARY – you must convert to ______ (M).

Example: Consider the reaction $2 SO_3(g) \rightleftharpoons O_2(g) + 2 SO_2(g)$

A reaction container has an initial $[SO_3]$ of 0.020 M. At equilibrium, $[SO_2] = 0.012$ M. Calculate the value of the equilibrium constant.

Reaction	2 SO ₃ (g)	4	O ₂ (g)	+	2 SO ₂ (g)
Initial concentration					
Change					
Equilibrium concentration					

Now you try! Consider the following reaction: $2 \text{ CH}_4(g) \rightleftharpoons C_2H_2(g) + 3 \text{ H}_2(g)$

A reaction mixture at 1700 °C initially contains $[CH_4] = 0.115$ M. At equilibrium, the mixture contains $[C_2H_2] = 0.035$ M. What is the value of the equilibrium constant?

28

Questionable Q: Predicting the Direction of a Reaction with Yummy RICE!

If you're given initial concentrations of ______ reactants and products, you need to calculate ______ to predict the direction of shift ______ using a RICE table to calculate equilibrium concentration.

Example: Consider the reaction: $2 \text{ NO}(g) \Rightarrow N_2(g) + O_2(g)$ $K_c = 1.00 \times 10^{-6}$ At 298 K, 2.25 moles of NO, 0.0749 moles of N₂, and 0.0750 moles of O₂ are placed into a 1.50 L flask and allowed to reach equilibrium. Calculate the equilibrium concentrations for each substance listed below at 298 K.

First, calculate Q. Which direction will the reaction shift?

Now you can make a RICE table! (Knowing which direction reaction shifts allows you to determine correct signs for x.)

Reaction		
Initial concentration		
C hange		
Equilibrium concentration		

Now you can write your equilibrium expression and plug in with the values from above.

Finally, what are your equilibrium concentrations?

Check yourself!

A reaction mixture at 25°C initially contains P_{I_2} = 0.100 atm, P_{Cl_2} = 0.100 atm, and P_{ICl} = 0.100 atm. Find the equilibrium partial pressures of I₂, Cl₂, and ICl at this temperature.

Multiple Choice Practice!

1. Ammonia and oxygen react according to the following equilibrium: $4 \text{ NH}_3(g) + 3 \text{ O}_2(g) \rightleftharpoons 2 \text{ N}_2(g) + 6 \text{ H}_2\text{O}(g)$. A 2.0 liter flask is initially filled with 8.0 mol of oxygen and 6.0 mol of ammonia, and 6.0 mol of H₂O are present when the system reaches equilibrium. How much oxygen is present at equilibrium?

a. $2.0 \text{ mol } O_2$ b. $3.0 \text{ mol } O_2$ c. $5.0 \text{ mol } O_2$ d. $6.0 \text{ mol } O_2$

Sometimes RICE math can get complicated. Let's try an example!

1. What are the equilibrium concentrations of each chemical species in a 0.15 M solution of HCN at 22°C?

 $HCN(aq) \rightleftharpoons H^{+}(aq) + CN^{-}(aq)$

 $K_c = 4.9 \times 10^{-10} \text{ at } 22^{\circ}\text{C}$

But wait! You should never actually have to use the ______ equation on the AP Chemistry test. (Mastering Chem, however, is a different story...;D)

But how can we solve a problem of this type without doing piles of math?

The "X is Negligible" Approximation

There are two common problem types where this approximation is valid:

- a. Very _____ K values (where $K < 10^{-5}$ or Initial Molarity $\ge 1000 \times K$) when starting from reactants: in this case, barely any products will be made.
- b. Very _____ K values (where K > 10⁵) when starting from products: in this case, barely any reactants will be made.

Note: The assumption about x being negligible only works when x is less than _____ of the initial concentration, so you can check the validity of your assumption after solving for x!

Let's try that first problem again, this time using the "x is negligible" approximation.

1. What are the equilibrium concentrations of each chemical species in a 0.15 M solution of HCN at 22°C?

 $HCN(aq) \rightleftharpoons H^{+}(aq) + CN^{-}(aq) \qquad \qquad K_c = 4.9 \times 10^{-10} \text{ at } 22^{\circ}C$

- 2. For the reaction $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$, which of the following conditions allows you to conclude that the change in concentration, x, is negligible? (Multiple correct answers!)
 - a. At a constant temperature, $[NO_2] = 1.0 \text{ M}$ and $K_c = 4.0 \times 10^{-7}$.
 - b. At a constant temperature, $[N_2O_4] = 1.0$ M and $K_c = 4.0 \times 10^{-7}$.
 - c. At a constant temperature, $[N_2O_4] = 1.0$ M and $K_c = 4.0 \times 10^6$.
 - d. At a constant temperature, $[NO_2] = 1.0 \text{ M}$ and $K_c = 4.0 \times 10^6$.

What if x isn't negligible??

The Perfect Square: if keeping "-x" is necessary, see if the problem is a perfect ______ and thus easy to solve using delicious algebra.

Example: Consider the reaction: $H_2(g) + I_2(g) \rightleftharpoons 2 HI(g)$, $K_p = 64$ (at 25°C). A reaction mixture at 25°C initially contains $P_{H_2} = P_{I_2} = 0.20$ atm. Find the equilibrium partial pressures of H_2 , I_2 , and HI.

1. If the K_p for the following reaction is 2.4 x 10^{-9} and the initial concentration of CO_2 is 2.00 atm, what are the partial pressures of the substances at equilibrium?

 $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$

2. A gas, XY(g), decomposes according to the following reaction: $2 XY(g) \rightleftharpoons X_2(g) + Y_2(g)$, $K_p = 230$. A sample of each of the gases is places in a previously evacuated container, and the initial partial pressures of the gases are shown in the table below:

Gas	Initial Partial Pressure (atm)
XY	0.010
X ₂	0.20
Y ₂	2.0

If the temperature of the reaction mixture is held constant, in which direction will the reaction proceed? Explain.
3. For the reaction $N_2O_4(g) \rightleftharpoons 2 NO_2(g)$, 1.0 mol of $N_2O_4(g)$ is placed in a 10.0 L reaction vessel at a constant temperature. $K_c = 4.0 \times 10^{-7}$ for this temperature. Find the equilibrium concentrations.

Multiple Choice Practice!

- 4. Here is a general reaction with a K value of 16: A(aq) + B(aq) ⇒ 2 C(aq).
 Initially, [A] = [B] = 2.0 M. Solve for the equilibrium concentration of each substance.
 a. [A] = [B] = 0.67 M, [C] = 1.3 M
 c. [A] = [B] = 0.67 M, [C] = 2.7 M
 - b. [A] = [B] = 1.6 M, [C] = 0.88 M d. [A] = [B] = 0.50 M, [C] = 3.0 M

- 5. Consider the following equilibrium: $Cl_2(g) + 2 NO(g) \rightleftharpoons 2 NOCl(g)$. Initially, the reaction was started by adding 10.0 *M* NOCl gas to a reaction vessel. At equilibrium, [NO] = 2.0 *M*. What is the value of K_c?
 - a. 0.63 b. 2.3 c. 4.0 d. 16

6. The reaction below came to equilibrium at a temperature of 100°C. At equilibrium the partial pressure due to NOBr was 4 atm, the partial pressure due to NO was 4 atm, and the partial pressure due to Br₂ was 2 atm. What is the equilibrium constant, K_p, for this reaction at 100°C?

 $2 \operatorname{NOBr}(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{Br}_2(g)$

a. ¼ b. ½ c. 1 d. 2

7. Consider the following: $2 \text{ SO}_2(g) + O_2(g) \rightleftharpoons 2 \text{ SO}_3(g)$. Initially, 0.030 mol SO₂ and 0.030 mol O₂ are placed into a 1.0 L container. At equilibrium, there is 0.020 mol O₂ present. What is the [SO₂] at equilibrium?

a. 0.010 mol/L b. 0.020 mol/L c. 0.030 mol/L d. 0.040 mol/L

Use the information below to answer #8–10.

Reaction 1:	$NOBr(g) \rightleftharpoons NO(g) + \frac{1}{2} Br_2(g)$	$K_c = 3.4 \times 10^{-2}$
Reaction 2:	2 NOCI(g) \rightleftharpoons 2 NO(g) + CI ₂ (g)	$K_c = 1.6 \times 10^{-5}$
Reaction 3:	$2 \operatorname{NO}(g) + 2 \operatorname{H}_2(g) \rightleftharpoons \operatorname{N}_2(g) + 2 \operatorname{H}_2\operatorname{O}(g)$	$K_c = 4.0 \times 10^6$
Reaction 4:	$N_2(g) + O_2(g) \rightleftharpoons 2 NO(g)$	$K_c = 4.2 \times 10^2$

- 8. For a reaction involving nitrogen monoxide inside a sealed flask, the value for the reaction quotient (Q) was found to be 1.1 x 10² at a given point. If, after this point, the amount of NO gas in the flask increased, which reaction is most likely taking place in the flask?
 - a. reaction 1 b. reaction 2 c. reaction 3 d. reaction 4
- 9. Which of these reactions proceeds at the slowest rate?
 - a. reaction 1 b. reaction 2 c. reaction 3 d. cannot be determined
- 10. For reaction #3, equimolar amounts of N₂ gas and H₂O gas are allowed to come to equilibrium in a sealed reaction vessel. Which of the following must be true at equilibrium?
 - I. $[N_2]$ must be less than $[H_2O]$.
 - II. $[N_2]$ must be greater than $[H_2O]$.
 - III. [NO] must be greater than [H₂].

Kitchen Sink Equilibria: Everything but the...

ΔG and K: Oh rats!

 $\Delta G^{\circ} = -RT \ln K$

R = universal gas constant = 8.314 J mol⁻¹ K⁻¹

T = temperature in Kelvin

K = equilibrium constant

This equation can be rewritten to give: $K = e^{-\Delta G^\circ/RT}$

And of course, don't forget the connection between electrochemistry and equilibrium!

ΔG and E^o: I've had enounf!

 $\Delta G^{\circ} = -nFE^{\circ}$

n = number of moles of electrons F = Faraday's constant = 96,485 coulombs per mole of electrons

1. Calculate Gibb's free energy, in kJ/mol_{rxn}, for the reaction of glucose and ATP to give glucose-6-phosphate and ADP, given that the equilibrium constant, *K*, is 5000. at a temperature of 38°C.

2. Assume that iron and magnesium half-cells are suitable connected at 298 K and standard conditions and that both aqueous solutions are 1.00 M concentrations.

$Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	E° = - 0.45 V
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	E ^o = – 2.37 V

Calculate the cell potential, the free energy change (in kJ/mol), and the equilibrium constant for this voltaic cell.

Upping the Pressure

37 PV = nRT

P = pressure (in atm, torr, or mmHg) R = universal gas constant (0.08206 L atm mol⁻¹ K⁻¹ or 62.36 L torr mol⁻¹ K⁻¹) T = temperature in Kelvin

The ideal gas law can be used to calculate the partial pressure of a gas at equilibrium if you know the equilibrium concentration of the gas.

3. If Consider the following reaction:

$$2 \text{ COF}_2(g) \rightleftharpoons \text{CO}_2(g) + \text{CH}_4(g) \qquad \qquad \text{K}_c = 2.00 \text{ at } 1000^\circ\text{C}$$

In an equilibrium mixture, the concentration of COF_2 is 0.255 M and the concentration of CH_4 is 0.118 M. What is the partial pressure of CO_2 at equilibrium?

Equilibrium and Thermodynamic Favorability

4. For the gaseous equilibrium represented below, it is observed that greater amounts of PCl₃ and Cl₂ are produced as the temperature is increased.

$$PCI_5(g) \rightleftharpoons PCI_3(g) + CI_2(g)$$

- a. What is the sign of ΔS° for the reaction? Justify.
- b. What change, if any, will occur in ΔG° for the reaction as the temperature is increased? Explain your reasoning in terms of Le Chatelier's principle.

Multiple Choice Practice!

- 5. An electrolytic cell based on the reaction represented above was constructed from iron and copper half-cells. The observed voltage was found to be 0.59 volt instead of the standard cell potential, E°, of 0.78 volts. Which of the following could correctly account for this observation?
 - A. The copper electrode was larger than the iron electrode.
 - B. The solutions in the half-cells had different volumes.
 - C. The Cu^{2+} solution was more concentrated than the Fe^{2+} solution.
 - D. The Fe^{2+} solution was more concentrated than the Cu^{2+} solution.

$$H_2O(s) \rightarrow H_2O(l)$$

- 6. When ice is placed into warm water at room temperature, which of the following is true for the phase change shown above?
 - a. Q > K b. ΔG is positive c. ΔH is negative d. ΔS is positive

2 Al(s) + 3 Mn²⁺(aq)
$$\rightarrow$$
 2 Al³⁺(aq) + 3 Mn(s)

- 7. A thermodynamically favorable cell, utilizing the reaction shown above, ran for 45 minutes. What happens to the measured voltage and why?
 - A. The measured voltage decreases over time because deviations in concentration that bring the cell closer to equilibrium will decrease the magnitude of the cell potential.
 - B. The measured voltage increases over time because deviations in concentration that bring the cell closer to equilibrium will increase the magnitude of the cell potential.
 - C. The measured voltage increases over time because $[Mn^{2+}]$ increases as the cell runs.
 - D. The measured voltage remains constant because $E^{o}_{\ cell}$ is an intensive property.
- 8. Which of the following statements is true about the reaction below?

 $2 \text{ Ag(s)} + \text{Cu}^{2+}(\text{aq}) \rightleftharpoons 2 \text{ Ag}^{+}(\text{aq}) + \text{Cu(s)} \text{ K}_{\text{eq}} = 2.7 \text{ x } 10^{-16}$

- a. E° and ΔG° are both positive. c. E° is positive and ΔG° is negative.
- b. E° and ΔG° are both negative. d. E° is negative and ΔG° is positive.
- 9. Calculate the standard free energy of the following reaction at 25°C.

 $Fe^{2+}(aq) + Mg(s) \rightarrow Fe(s) + Mg^{2+}(aq)$ $E^{o}_{cell} = 1.92 V$

- a. 3.7×10^5 c. -3.7×10^5
- b. 1.6×10^3 d. -1.6×10^3

10. Which of the following would cause an increase in the potential of the voltaic cell described by the reaction below?

 $2 \operatorname{Ag}^{+}(\operatorname{aq}) + \operatorname{Fe}(\operatorname{s}) \rightarrow 2 \operatorname{Ag}(\operatorname{s}) + \operatorname{Fe}^{2+}(\operatorname{aq})$

- a. Increasing [Fe²⁺] c. Decreasing [Fe²⁺]
- b. Adding more Fe(s)

- d. Removing some Fe(s)
- 11. The relationship between K_{eq} and temperature for an exothermic reaction is represented by

12. Consider the following equilibrium:

2 CO(g) + O₂(g) \rightleftharpoons 2 CO₂(g) K_c = 4.0 × 10⁻¹⁰ 2 CO₂(g) \rightleftharpoons 2CO(g) + O₂(g)?

What is the value of K_c for $2 CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$?

a. 4.0×10^{10} b. 2.0×10^{-5} c. 2.0×10^{5} d. 2.5×10^{9}

 $2 \text{ NO(g)} + \text{Cl}_2(g) \rightarrow 2 \text{ NOCl(g)} \qquad \Delta H = -77 \text{ kJ/mol}_{rxn}$

- 13. Which of the following statements accurately describes the above reaction?
 - a. The entropy of the products exceeds that of the reactants.
 - b. NO(g) will always be the limiting reagent.
 - c. K will be greater than 1 at all temperatures.
 - d. The temperature of the surroundings will increase as this reaction progresses.

Solubility Equilibria: Dissolve All Your Troubles Away!

Up until now, we've pretended that compounds fall into one of two categories: 100% soluble or 100% insoluble. Actually, an equilibrium can exist between a partially soluble substance and its solution.

Solubility Product Constant (_____

Equilibrium expression for dissolving a solid into ions

Like all K values, K_{sp} is constant at a constant temperature.

$\operatorname{AgCl}(s) \rightleftharpoons \operatorname{Ag}^+(aq) + \operatorname{Cl}^-(aq)$

When the rate at which a solid dissolves into ions is _______ to the rate at which ions precipitate back to solid, the system has reached equilibrium.

Let's Practice! Write the Ksp expression for each of the following dissolutions:

Salt	Dissociation reaction	K _{sp} Expression
K ₂ CO ₃		
Al ₂ S ₃		

Wait a sec, K_{sp} only has _____! But why?

<u>Reminder</u>: There are three types of 100% soluble ions that you have to memorize:

Always soluble: ______ metal cations, _____, ____

Small K _{sp} (K << 1)	Larger K _{sp}	100% Soluble
 Only a small amount of solid dissociates into ions Lower solubility 	 More solid dissociates into ions Higher solubility 	All solid dissociates into ionsDissolves to completion

41 K_{sp} Calculations

ALWAYS write the balanced dissociation reaction and K_{sp} expression before solving!

<u>Example</u>: When silver sulfide dissolves in pure water, $[S^{2-}] = 3.4 \times 10^{-17}$ mol/L at 25°C. Calculate its K_{sp} value.

Now you try!

1. What is the K_{sp} value of silver phosphate at 25°C, if $[PO_4^{3-}] = 1.8 \times 10^{-18}$ M when dissolved in pure water?

2. What is the concentration of chloride ions that will form in a solution of $PbCl_2$ in pure water? The K_{sp} of lead (II) chloride at 25°C is 1.17×10^{-5} .

42 But wait! The "____" term for dissociation always refers to the amount of ______ that will dissolve (since the stoichiometric coefficient of the salt will always be _____ in the dissociation reaction. This term has a special name!

<u>Solubility</u> "S" (aka <u>Molar Solubility</u>) = "x" in your K_{sp} RICE Table

How much of a will dissolve per L of solution (Units: M = mol	/L)
Solubility is an equilibrium position and therefore change (for example, if you change the nun ions in solution, this will shift the equilibrium position and thus, the solubility).	nber of
• Larger molar solubility values suggest dissociation into ions and greater solubility.	
• Smaller molar solubility values suggest dissociation into ions and <u>lower</u> solubility.	
Important Note about molar solubility: When comparing solubility of given compounds, compare	molar
solubility values, K _{sp} values	
Exception: can directly compare molar solubility values if and only if the compounds compared in the compared in	ared

Exception: can directly compare molar solubility values if and only if the compounds compared dissociate into the ______ number of ions

Now we can answer problems using the same math we used on the previous page. The terminology will be different, but the calculations are the same! Let's try some:

3. The molar solubility of barium fluoride is at 25° C is 2.45 x 10^{-5} M. Calculate K_{sp}.

4. Calculate the molar solubility of nickel (II) carbonate, which has a K_{sp} of 1.4×10^{-7} at 25°C.

43 How Much Will Dissolve?

You can use molar solubility to determine how many ______ of a solid will dissolve in a quantity of water! 5. How many grams of iron (II) hydroxide can dissolve in 500. mL of water? Its $K_{sp} = 4.87 \times 10^{-17}$ at 25°C.

- 6. The molar solubility of PbCl₂ in pure water is 1.43×10^{-2} M at 25°C.
 - a. Write the equilibrium constant expression for the dissolving of $PbCl_2(s)$.

b. How many grams of PbCl₂ can dissolve into 200. mL of pure water?

c. What change could be made to increase amount of PbCl₂ that will dissolve?

Multiple Choice Practice!

7. The solubility product, K_{sp} , of AgCl is 1.8 x 10⁻¹⁰. Which of the following expressions is equal to the molar solubility of AgCl?

a.
$$(1.8 \times 10^{-10})^2$$
 molar
b. $\frac{1.8 \times 10^{-10}}{2}$ molar
c. 1.8×10^{-10} molar
d. $\sqrt{1.8 \times 10^{-10}}$ molar

8. Which of the following is equal to the solubility product, K_{sp} , of Ag_2CO_3 ?

a.
$$K_{sp} = [Ag^+][CO_3^{2^-}]$$

c. $K_{sp} = [Ag^+]^2[CO_3^{2^-}]$

- b. $K_{sp} = [Ag^+][CO_3^{2-}]^2$ d. $K_{sp} = [Ag^+]^2[CO_3^{2-}]^2$
- 9. If the solubility of BaF_2 is equal to x, which of the following expressions is equal to the solubility product, K_{sp} , of BaF_2 ?
 - a. x^2 b. $2x^2$ c. $2x^3$ d. $4x^3$

10. In a saturated solution of Na_3PO_4 , $[Na^+] = 0.30$ M. What is the molar solubility of Na_3PO_4 ?

- a. 0.10 M b. 0.30 M c. 0.60 M d. 0.90 M
- 11. What is the maximum mass of AgCl can dissolve in 100. mL of pure water at 25°C? The molar solubility of AgCl is 1.3×10^{-5} .
 - a. 1.9×10^{-4} g b. 1.9×10^{-5} g c. 9.1×10^{-9} g d. 9.1×10^{-6} g

Solubility Lab

Although all compounds have a characteristic solubility in water at a given temperature, some families of compounds are more soluble than others and it is useful to understand the general rules of solubility. If the solubility of a substance is greater than 0.1 mol/L, we call the substance soluble. If the solubility is less than 0.01 mol/L, we call the substance insoluble, and if the solubility is between 0.01 mol/L and 0.1 mol/L, we call the substance slightly soluble or sparingly soluble. Solubility equilibrium is typically studied in saturated solutions of slightly soluble compounds.

Part 1: Precipitation of Slightly Soluble Compounds

Reaction #1:

- 1. Place one drop of 0.10 M lead (II) nitrate, $Pb(NO_3)_2$, in a clean well.
- 2. Add one drop of 0.10 M sodium bromide, NaBr, to the same well. Mix well by tapping/ flicking the well plate.

Observations:		
Complete reaction:		
Net-ionic reaction:		
Spectator ions:		

Reaction #2:

- 1. Place one drop of 0.10 M lead (II) nitrate, Pb(NO₃)₂, in a clean well.
- 2. Add one drop of 0.10 M sodium iodide, NaI, to the same well. Mix well by tapping/ flicking the well plate.

Observations:
Complete reaction:
Net-ionic reaction:
Spectator lons:

Part 2: Relative Solubility

Challenge: Determine which of the two lead-containing precipitates formed in Part 1 is least soluble.

Materials: a clean well plate, 0.10 M Pb(NO₃)₂ solution, 0.10 M NaBr solution, and 0.10 M NaI solution.

Experimental Design: In the space below,

- 1. Briefly outline the experimental procedure you will follow (include all equipment and solutions).
- 2. Explain how the data collected will allow you to determine which of the two lead precipitates is least soluble.
- 3. Check the answers to #1 and #2 with your teacher. Once they sign off, you may start your experiment!

Observations/Data:

Results: Which precipitate is least soluble? Explain how your data supports your conclusion.

47 Part 3: Relative Solubility with Numbers

Use the information provided in the table below to answer the following questions.

	K _{sp}	Molar solubility (mol/L)
PbBr ₂	6.6 x 10 ⁻⁶	
PbI ₂		1.3 x 10 ⁻³

1. Complete the table above by filling in the missing values. Show all math in the space below.

2. Using the values in the completed table, determine which of the two precipitates is least soluble. Explain.

3. Does your answer to #2 support the results of your experiment in Part 2? Explain.

48 Part 4: One-pot Solubility

Precipitate colorKspAgClmilky white 1.8×10^{-10} Ag2CO3white with yellow tint 8.1×10^{-12}

1. The following ions are all present in solution at the same time: $Ag^{+}(aq)$, $Cl^{-}(aq)$, and $CO_{3}^{2^{-}}(aq)$. Using the information provided in the table above and your knowledge and solubility equilibria, predict which of the two precipitates above will form under these conditions. Justify your prediction.

 Design an experiment to test the prediction you made in question #1. Your available materials are one well plate, 0.10 M AgNO₃(aq), 0.10 M Na₂CO₃(aq), and 0.10 M NaCl(aq). Record your observations/data below.

Observations/Data:

Results: Which precipitate formed when ions of Ag^+ , Cl^- , and CO_3^{2-} were present? Explain. Did your data support your prediction in question #1?

<u>Clean-Up</u>: Empty the solutions into the designated waste heavy metals container. Wash the well plates thoroughly with soap and water, rinse with tap water, then with distilled water. Clean up all other materials **and wash your hands** with soap and water.

49 The Common Ion Effect

Reminder: solubility can change if you change reaction conditions!

- Le Châtelier's principle predicts that a salt will become ______ soluble in a solution that already contains one of its own ions already dissolved: what's known as a ______ ion.
- The presence of a common ion acts like increasing the concentration of a ______ ion in the salt dissolution, causing the system to shift ______ to establish equilibrium (towards the ______ side).

Example:

- 1. Circle any of the following compounds that contain a common ion to MgCl₂:
 - AgF₂ NaCl $Mg(OH)_2$ AlCl₃ Al_2S_3
- Which of the compounds above, if present in the solution in equal concentration, would reduce the solubility of MgCl₂:
 - a. the most? Why?
 - b. the least? Why?

The Effect of pH on Solubility

The common ion effect predicts that when a salt contains ions that can act as an acid or a base, the solubility of that salt will be affected by changes in ______.

Example:

$$Fe(OH)_3 \rightleftharpoons Fe^{3+}(aq) + 3 OH^{-}(aq)$$

3. Will iron (III) hydroxide be more, less, or equally soluble in a **basic** solution (when compared to its solubility in pure water)? Explain.

4. Will iron (III) hydroxide be more, less, or equally soluble in an **acidic** solution (when compared to its solubility in pure water)? Explain.

50 Common Ion Calculations

5. Calculate the molar solubility of nickel (II) carbonate in a solution containing 0.100 M NaCO₃. The K_{sp} of NiCO₃ is 1.4×10^{-7} at 25°C.

6. Calculate the molar solubility of SrF₂ in a solution containing 0.400 M NaF. The K_{sp} of SrF₂ is 7.9 × 10⁻¹⁰ at 25°C.

Common Ion Applications: Achieving a Desired Concentration

You can use the common ion effect to control the ______ of the <u>non-common</u> ion in solution! Let's see how this chemical magic works.

7. In pure water at 25°C, the K_{sp} of CaCO₃ is 3.8×10^{-9} . Ca(NO₃)₂ is added to 1.00 L of a saturated solution of CaCO₃ at 25°C until the [CO₃^{2–}] is reduced to 2.3×10^{-7} M. How many moles of Ca(NO₃)₂ are dissolved in solution at the point when [CO₃^{2–}] = 2.3×10^{-7} M? (Assume the added Ca(NO₃)₂ has a negligible effect on the total volume of solution.)

8. Given a 2.00 L saturated solution of Cu(IO₃)₂, $K_{sp} = 1.4 \times 10^{-7}$, how many moles of NaIO₃ would need to be dissolved in solution to reduce [Cu²⁺] to 6.0 x 10⁻⁵ M? (Assume the added NaIO₃ does not appreciably change the total volume of solution.)

Even more practice!

9. Copper(I) bromide has a measured solubility of 2.0×10^{-4} mol/L at 25°C. Calculate its K_{sp} value.

10. The K_{sp} value for copper(II) iodate, Cu(IO₃₎₂, is 1.4×10^{-7} at 25°C. What is the maximum mass, in grams, of copper (II) iodate that can dissolve in 500. mL of water?

11. In pure water at 25°C, the molar solubility of PbCl₂ is 1.3×10^{-6} and the K_{sp} is 1.6×10^{-5} . LiCl is added to 5.00 L of a saturated solution of PbCl₂ at 25°C until the [Pb²⁺] is reduced to 4.5 x 10^{-4} M. How many moles of chloride ions are dissolved in solution at the point when [Pb²⁺] = 4.5 x 10^{-4} M? (Assume the added LiCl has a negligible effect on the total volume of solution.)

Use the following information to answer questions 12–14.

150 mL of saturated SrF_2 solution is present in a 250 mL beaker at room temperature. The molar solubility of SrF_2 at 298 K is 1.0×10^{-3} M.

- 12. What are the concentrations of Sr^{2+} and F^{-} in the beaker?
 - a. $[Sr^{2+}] = 1.0 \times 10^{-3} \text{ M}; [F^{-}] = 1.0 \times 10^{-3} \text{ M}$
 - b. $[Sr^{2+}] = 1.0 \times 10^{-3} \text{ M}; [F^{-}] = 2.0 \times 10^{-3} \text{ M}$
 - c. $[Sr^{2+}] = 2.0 \times 10^{-3} \text{ M}; [F^{-}] = 1.0 \times 10^{-3} \text{ M}$
 - d. $[Sr^{2+}] = 2.0 \times 10^{-3} \text{ M}; [F^{-}] = 2.0 \times 10^{-3} \text{ M}$
- 13. What would be the effect on [Sr²⁺] if some NaF(s) was added to the beaker?
 - a. $[Sr^{2+}]$ would remain unchanged; neither ion in NaF(s) is common to Sr^{2+}
 - b. $[Sr^{2+}]$ would increase; more Sr^{2+} ions would be needed to balance the additional F^- ions to re-establish equilibrium.
 - c. [Sr²⁺] would decrease; the additional fluoride ions would cause the system to shift left to re-establish equilibrium.
 - d. [Sr²⁺] would decrease; the additional Na⁺ would cause an excess of positive charge, and the system would shift left to reduce overall positive charge.
- 14. Calculate the solubility product for SrF_2 at $25^{\circ}C$.
 - a. 2×10^{-9} c. 4×10^{-9}
 - b. 2×10^{-6} d. 4×10^{-6}

⁵³ Will a Precipitate Form? A Task for K vs Q!

Precipitation occurs when the concentrations of ions is ______ than the solubility of the ionic compound.

Compare the value of Q with given K_{sp} to determine if a precipitate will form!

K > Q	K = Q	K < Q
Unsaturated Solution	Saturated Solution Saturated Solution with	
System will shift right to reach equilibrium AgCl(s) ⇄ Ag ⁺ (aq) + Cl ⁻ (aq)	At equilibrium AgCl(s) \rightleftharpoons Ag ⁺ (aq) + Cl ⁻ (aq)	System will shift left to reach equilibrium AgCl(s) ⇄ Ag ⁺ (aq) + Cl ⁻ (aq)
More solid will dissolve until K = Q.	Solid will both dissolve and precipitate at the same rate.	More solid will precipitate until K = Q.
no precipitate	maybe precipitate	yes precipitate

Important Ideas to Note:

- 1. If ______ solid is present, the solution is at equilibrium (a _______ solution)
- 3. If ions are present that could form _______ salts, the solid with the ______ molar solubility will form.

Solubility Equilibrium Translation Guide

- 1. <u>Solubility product constant</u> = K_{sp} (aka the equilibrium constant for solubility)
- 2. Molar solubility = x from RICE table (aka how many moles of a solid will dissolve in 1.0 L, units = M = mol/L)
- 3. <u>Saturated</u> = equilibrium (aka a solution has dissolved as many ions as can fit, any extra will precipitate)

Let's Practice!

- 1. A chemist makes a 2.0 L saturated solution of Ba₃(PO₄)₂ solution, which has a $K_{sp} = 6.0 \times 10^{-39}$.
 - a. What is the concentration of Ba²⁺ ions in solution?

b. After two days of sitting on the counter, some liquid has evaporated from the solution. Did [Ba²⁺] increase, decrease, or remain the same? Justify your answer.

c. The chemist adds 3.00 g of solid $(NH_4)_3PO_4$ to the original saturated solution of $Ba_3(PO_4)_2$. Did $[Ba^{2+}]$ increase, decrease, or remain the same? Justify your answer.

2. A solution containing lead (II) nitrate is mixed with one containing sodium bromide to form a solution that is 0.0150 M in Pb(NO₃)₃ and 0.00350 M NaBr. Does a precipitate form in this newly mixed solution? (K_{sp} of PbBr₂ = 4.67 × 10⁻⁶)

3. The K_{sp} value for lead (II) bromide, PbBr₂, is 4.6×10^{-6} at 25°C. What is the maximum mass, in grams, of PbBr₂ that can dissolve in 1.50 L of water?

4. A student mixes 15.0 mL of 0.015 M sodium iodide solution, NaI, with 5.00 mL of 0.0025 M Pb(NO₃)₂. The K_{sp} of PbI₂ is 8.5 x 10⁻⁹ M. What will the student observe? Justify your answer with calculations.

5. Sodium carbonate is added to a 0.0024 M solution of the nickel (II) ion. If $[Na_2CO_3] = 1.0 \times 10^{-4}$ M, will a precipitate form? (The K_{sp} of nickel (II) carbonate is 6.6 x 10^{-9} .)

6. Calculate the molar solubility of Ba₃(PO₄)₂, which has a $K_{sp} = 6.0 \times 10^{-39}$.

Multiple Choice Practice!

- 7. 150 mL of saturated SrF₂ solution is present in a 250 mL beaker at room temperature. If some of the solution evaporates overnight, which of the following will occur?
 - a. The mass of the solid and the concentration of the ions will remain the same.
 - b. The mass of the solid and the concentration of the ions will increase.
 - c. The mass of the solid will decrease, and the concentration of the ions will remain the same.
 - d. The mass of the solid will increase, and the concentration of the ions will remain the same.
- 8. A student added 1 liter of a 1.0 M KCl solution to 1 liter of a 1.0 M Pb(NO₃)₃ solution. A lead chloride precipitate formed, and nearly all of the lead ions disappeared from solution. Which of the following lists the ions remaining in the solution in order of decreasing concentration?
 - a. $[NO_3^-] > [K^+] > [Pb^{2+}]$ c. $[K^+] > [Pb^{2+}] > [NO_3^-]$
 - b. $[NO_3^-] > [Pb^{2+}] > [K^+]$ d. $[K^+] > [NO_3^-] > [Pb^{2+}]$

Use the following information to answer questions 8-10.

Silver sulfate, Ag_2SO_4 , has a solubility product constant of 1.0×10^{-5} . The diagram to the right shows the products of a precipitation reaction in which some silver sulfate was formed.

- 9. What is the identity of the excess reactant?
 - a. AgNO₃ c. NaNO₃
 - b. Ag_2SO_4 d. Na_2SO_4

10. If the beaker above was left uncovered for several hours:

I. Some of the Ag ₂ SO ₄ would dissolve	
---	--

- II. Additional Ag₂SO₄ would precipitate.
- III. [Ag⁺] would remain constant.
- a. I only b. II only c. II and III d. I and III
- 11. Which ion concentration below would have led the precipitate to form?
 - a. $[Ag^+] = 0.01 \text{ M}, [SO_4^{2-}] = 0.01 \text{ M}$
 - b. $[Ag^+] = 0.10 \text{ M}, [SO_4^{2-}] = 0.01 \text{ M}$
 - c. $[Ag^+] = 0.01 \text{ M}, [SO_4^{2-}] = 0.10 \text{ M}$
 - d. It is impossible to determine without knowing the total volume of the solution.

56

57 Solubility Summary Sheet

Solubility Language	Normal Equilibrium Language
solubility product constant (K _{sp})	equilibrium constant (K)
molar solubility	x (from RICE table)
saturated solution	system at equilibrium

When you need to solve for molar solubility

Given?	Asked to find?	Strategy
K _{sp}	molar solubility	 Write K_{sp} expression using ions produced when solid dissolves. Substitute x values from mini-RICE table Solve for x
 K_{sp} OR Concentration of all ions in a saturated solution 	# of grams that can dissolve	 Write K_{sp} expression using ions produced when solid dissolves. Substitute x values from mini-RICE table Solve for x (in M = mol / L) Use the volume of solution to calculate moles that can dissolve Use molar mass to convert to grams

When you don't need to solve for molar solubility

Given?	Asked to find?	Use:
Concentration of all ions in a saturated solution	K _{sp}	 Write K_{sp} expression using ions produced when solid dissolves. Substitute given concentrations and solve for K_{sp}.
other ion concentrations at equilibrium <u>and</u> K _{sp}	Concentration of ONE ion in a saturated solution	 Write K_{sp} expression using ions produced when solid dissolves. Plug in known values, solve for unknown concentration.
ion concentrations when solutions are added or mixed <u>and</u> K _{sp}	If a precipitate will form	 Write Q_{sp} expression using ions produced when solid dissolves. Substitute given concentrations and solve for Q_{sp}. Compare K and Q: K > Q = no precipitate K < Q = yes precipitate

58 Unit 7 MC Practice

1.

$$2A(g) \rightleftharpoons 2 B(g) + C(g)$$
 $K = 1.6 \times 10^4$

Two moles of Gas A are placed into a closed system where the temperature is held constant at 270 K and allowed to reach equilibrium as represented by the chemical reaction shown above. After 15 minutes at equilibrium, additional Gas B is injected into the reaction vessel. Which of the following best describes the behavior of the equilibrium mixture in response to the addition of Gas B?

- A The concentration of Gas A increases.
- B The concentration of Gas C increases.
- C The value of the equilibrium constant increases.
- D There is no observable effect since the equilibrium was already established.
- 2. In which of the following systems would the number of moles of the substances present at equilibrium NOT be shifted by a change in the volume of the system at constant temperature?

A
$$CO(g) + NO(g) \rightleftharpoons CO_2(g) + \frac{1}{2} N_2(g)$$

- **B** $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$
- **C** $N_2(g) + 2 O_2(g) \rightleftharpoons 2 NO_2(g)$
- **D** NO(g) + $O_3(g) \rightleftharpoons NO_2(g) + O_2(g)$
- 3.

$H_2(g) + Cl_2(g) \rightleftharpoons 2HCl(g)$

The chemical equation for the formation of hydrogen chloride gas from its elements is shown above. Given that the equilibrium constant for the reaction above is K_{pr} . Which of the following best represents the equilibrium constant for the reaction

A
$$\frac{1}{K_p^2}$$

HCl(g) $\rightleftharpoons \frac{1}{2}H_2(g) + \frac{1}{2}Cl_2(g)$?
C $\frac{1}{\sqrt{K_p}}$

B
$$K_p^2$$
 D $\sqrt{K_p}$

$CaCl_2(s) + 2H_2O(g) \rightleftharpoons CaCl_2 \cdot 2H_2O(s)$

Solid calcium chloride reacts with water as shown above. Which of the following is the correct equilibrium expression for this reaction?

59

$$\mathbf{A} \quad \mathcal{K} = \frac{\left[CaC_{2} \cdot 2H_{2}O\right]}{\left[CaC_{2}\right]\left[H_{2}O\right]} \qquad \qquad \mathbf{C} \quad \mathcal{K} = \frac{1}{2\left[H_{2}O\right]}$$
$$\mathbf{B} \quad \mathcal{K} = \frac{1}{\left[H_{2}O\right]^{2}} \qquad \qquad \qquad \mathbf{D} \quad \mathcal{K} = \left[H_{2}O\right]^{2}$$

5. A gaseous reaction occurs and comes to equilibrium, as shown below. Which of the following changes to the system will serve to increase the number of moles of I₂ present at equilibrium?

$$2 HI(g) + CI_2(g) \leftrightarrow 2 HCI(g) + I_2(g) + energy$$

- a. Increasing the volume at constant temperature
- **b.** Decreasing the volume at constant temperature
- c. Increasing the temperature at constant volume
- d. Decreasing the temperature at constant volume

$$\begin{split} &\text{CO}_2(g) + \text{H}_2(g) \rightleftharpoons \text{CO}(g) + \text{H}_2\text{O}(g) \quad K_c = 1.4 \\ &\text{CO}(g) + 2 \text{H}_2(g) \rightleftharpoons \text{CH}_3\text{OH}(g) \qquad K_c = 14.5 \end{split}$$

6. Given the above information, what would be the equilibrium constant for the reaction below?

$$3 \operatorname{CO}(g) + 2 \operatorname{H}_2 \operatorname{O}(g) \rightleftharpoons 2 \operatorname{CO}_2(g) + \operatorname{CH}_3 \operatorname{OH}(g)$$

(A) (2)(1.4)(14.5) (C)
$$\frac{14.5}{(1.4)^2}$$

(B) $\frac{(1.4)(14.5)}{2}$ (D) $14.5 - 1.4^2$

7. In which of the following ways could the reaction below be manipulated to create more product?

 $PCl_3(g) + Cl_2(g) \leftrightarrow PCl_5(g)$ $\Delta H = -92.5 \text{ kJ/mol}_{rxn}$

- a. Decreasing the concentration of PCl₃
- b. Increasing the pressure
- c. Increasing the temperature
- d. None of the above

8. A sample of H₂S gas is placed in an evacuated, sealed container and heated until the following decomposition reaction occurs at 1000 K: $2 H_2S(g) \rightarrow 2 H_2(g) + S_2(g)$ $K_c = 1.0 \times 10^{-6}$

Which option best describes what will immediately occur to the reaction rates if the pressure on the system is increased after it has reached equilibrium?

- a. The rate of both the forward and the reverse reactions will increase.
- **b.** The rate of the forward reaction will increase will the rate of the reverse reaction will decrease.
- c. The rate of the forward reaction will decrease will the rate of the reverse reaction will increase.
- **d.** Neither the rate of the forward nor reverse reactions will change.

$$Br_2(g) + I_2(g) \leftrightarrow 2 \ IBr(g)$$

9. At 150°C, the equilibrium constant, K_p, for the reaction shown above has a value of 300. The reaction was allowed to reach equilibrium in a sealed container and the partial pressure due to IBr(g) was found to be 3 atm. Which of the following could be the partial pressures due to Br₂(g) and I₂(g) in the container?

	Br₂(g)	I₂(g)
a.	0.1 atm	0.3 atm
b.	0.3 atm	1 atm
c.	1 atm	1 atm
d.	1 atm	3 atm

10. Consider the following equilibrium: $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ $K_{eq} = 50.0$ What is the value K_{eq} for the reaction rewritten as: $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$ $K_{eq} = ?$ a. -50.0b. 0.0200c. 25.0d. 50.0

11. Consider the following equilibrium: $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

An equilibrium mixture contains 4.0×10^{-2} mol N₂O₄ and 1.5×10^{-2} mol NO₂ in a 1.0 L flask. What is the value of K_{eq}?

a. 5.6×10^{-3} b. 3.8×10^{-1} c. 7.5×10^{-1} d. 1.8×10^{2}

12. Consider the following equilibrium: $Cl_2(g) + 2 NO(g) \rightleftharpoons 2 NOCl(g)$ $K_{eq} = 5.0$ At equilibrium, $[Cl_2] = 1.0 M$ and [NO] = 2.0 M. What is the [NOCl] at equilibrium? a. 0.12 M b. 0.89 M c. 4.5 M d. 10. M

61 AP Free Response Practice #1 [2007 #1, 6 points, modified]

 A sample of solid U₃O₈ is placed in a rigid 1.500 L flask. Chlorine gas, Cl₂(g), is added, and the flask is heated to 862°C. The equation for the reaction that takes place and the equilibrium constant expression for the reaction are given below.

$$U_3O_8(s) + 3\operatorname{Cl}_2(g) \leftrightarrow 3\operatorname{UO}_2\operatorname{Cl}_2(g) + O_2(g)$$

When the system is at equilibrium, the partial pressure of $Cl_2(g)$ is 1.007 atm, the partial pressure of $UO_2Cl_2(g)$ is 9.734 x 10^{-4} atm, and the partial pressure of $O_2(g)$ is 3.245 x 10^{-4} atm.

a. Write the equilibrium constant expression, K_p, for this reaction and calculate the value of K_p for the system at 862°C. [2 points]

b. Calculate the concentration of Cl₂(g) at equilibrium. [1 point]

c. Calculate the Gibb's free-energy change, ΔG° , for the reaction at 862°C. [1 point]

d. After a certain period of time, 1.000 mole of $O_2(g)$ is added to the mixture in the flask. Does the mass of $U_3O_8(s)$ in the flask increase, decrease, or remain the same? Justify your answer. [2 point]

- 2. Several reactions are carried out using AgBr, a cream-colored silver salt for which the value of the solubility-product constant, K_{sp} , is 5.0 x 10^{-13} at 298 K.
 - a. Write the expression for the solubility-product constant, K_{sp}, of AgBr. [1 point]

b. Calculate the value of [Ag⁺] in 50.0 mL of a saturated solution of AgBr at 298 K. [1 point]

c. A 50.0 mL sample of distilled water is added to the solution described in part (b), which is in a beaker with some solid AgBr at the bottom. The solution is stirred and equilibrium is reestablished. Some solid AgBr remains in the beaker. Is the value of [Ag⁺] greater than, less than, or equal to the value you calculated in part (b) ? Justify your answer. [1 point]

d. Calculate the minimum volume of distilled water, in liters, necessary to completely dissolve a 5.0 g sample of AgBr(s) at 298 K. (The molar mass of AgBr is 188 g mol⁻¹.) [2 points]

e. A student mixes 10.0 mL of $1.5 \times 10^{-4} M$ AgNO₃ with 2.0 mL of $5.0 \times 10^{-4} M$ NaBr and stirs the resulting mixture. What will the student observe? Justify your answer with calculations. [3 points]

- f. The color of another salt of silver, Agl(s), is yellow. A student adds a solution of Nal to a test tube containing a small amount of solid, cream-colored AgBr. After stirring the contents of the test tube, the student observes that the solid in the test tube changes color from cream to yellow.
 - i. Write the chemical equation for the reaction that occurred in the test tube. [1 point]

ii. Which salt has the greater value of K_{sp}: AgBr or Agl ? Justify your answer. [1 point]

- 3. Answer the following questions about the solubility and reactions of the ionic compounds M(OH)₂ and MCO₃, where M represents an unidentified metal.
 - a. Identify the charge of the M ion in the ionic compounds above. [1 point] ______
 - b. At 25°C, in a saturated solution of M(OH)₂, $[OH^-] = 1.4 \times 10^{-5} \text{ M}$.
 - i. Write the solubility-product constant expression for M(OH)2. [1 point]

ii. Calculate the value of the solubility-product constant, *K*_{sp}, for M(OH)₂ at 25°C. [2 points]

c. For the metal carbonate, MCO₃, the value of the solubility-product constant, K_{sp} , is 7.4 × 10⁻¹⁴ at 25°C. On the basis of this information and your results in part (b), which compound, M(OH)₂ or MCO₃, has the greater molar solubility in water at 25°C? Justify your answer with a calculation. [2 points]

d. MCO₃ decomposes at high temperatures, as shown by the reaction represented below.

$MCO_3(s) \leftrightarrow MO(s) + CO_2(g)$

A sample of MCO₃ is placed in a previously evacuated container, heated to 423 K, and allowed to come to equilibrium. Some solid MCO₃ remains in the container. The value of K_p for the reaction at 423 K is 0.0012.

i. Write the equilibrium-constant expression for *K*_p of the reaction. [1 point]

ii. Determine the pressure, in atm, of $CO_2(g)$ in the container at equilibrium at 423 K. [1 point]

iii. Indicate whether the value of ΔG° for the reaction at 423 K is positive, negative, or zero. Justify your answer.

66 **AP Free Response Practice #4** [Laying the Foundation, 9 points]

- When 3.29 moles of nitrogen gas, N₂, and 2.95 moles of hydrogen gas, H₂, are placed in a 5.00 L evacuated container at 773 K, ammonia gas, NH₃, is formed according to this equation: N₂(g) + 3 H₂(g) ↔ 2 NH₃(g) When equilibrium is established, 0.565 mole of NH₃(g) is present in the flask.
 - a. Write the expression for the equilibrium constant, K_c , for this reaction. [1 point]
 - b. Calculate the equilibrium concentrations, in mol L^{-1} , of the following gases in the container at 773 K.
 - i. N₂(g) [1 point]

ii. H₂(g) [1 point]

- c. Calculate the value of the equilibrium constant, *K*_c, at 773 K. [1 point]
- d. When the same reaction is carried out at 298 K, the number of moles of NH₃ present at equilibrium is much larger than 0.565 mole. Is the forward reaction endothermic or exothermic? Justify your answer. [1 point]

e. Calculate the value of the equilibrium constant, K_c , for the reaction below. [1 points] $6 \text{ NH}_3(g) \leftrightarrow 3 \text{ N}_2(g) + 9 \text{ H}_2(g)$

68 AP Free Response Practice #5 [5 Steps to a 5, 7 points]

 $N_2(g) + 3 H_2(g) \rightleftharpoons 2 NH_3(g)$ $\Delta H = -92.4 kJ/mol_{rxn}$

- 1. When the reaction above took place at a temperature of 570 K in a reaction vessel of 0.75 L, the following values were measured after the system reached equilibrium: $NH_3 = 0.150 \text{ mol}$, $N_2 = 0.375 \text{ mol}$, and $H_2 = 0.150 \text{ mol}$.
 - a. Write the expression for the equilibrium constant, K_c, and calculate its value. [2 points]

b. Calculate ΔG for this reaction. [1 point]

- c. Describe how the concentration of $H_2(g)$ at equilibrium will be affected by each of the following changes to the system at equilibrium.
 - i. The temperature is increased. [1 point]

ii. The volume of the reaction chamber is increased. [1 point]

iii. N_2 gas is added to the reaction chamber. [1 point]

iv. Helium gas is added to the reaction chamber. [1 point]
70 AP Free Response Practice #6 [2013 #1, modified, 4 points]

- 2. Answer the following questions about the solubility of some fluoride salts of alkaline earth metals.
 - a. A student prepares 100. mL of a saturated solution of MgF₂ by adding 0.50 g of solid MgF₂ to 100. mL of distilled water at 25°C and stirring until no more solid dissolves. (Assume that the volume of the undissolved MgF₂ is negligibly small.) The saturated solution is analyzed, and it is determined that $[F^-]$ in the solution is 2.4 × 10⁻³ M.
 - i. Write the chemical equation for the dissolving of solid MgF₂ in water. [1 point]

ii. Calculate the number of moles of MgF₂ that dissolved. [2 points]

iii. Determine the value of the solubility-product constant, *K*_{sp}, for MgF₂ at 25°C. [1 point]

- 5. Answer the following questions about the solubility of Ca(OH)₂ ($K_{sp} = 1.3 \times 10^{-6}$). (2015)
 - b. Write a balanced chemical equation for the dissolution of Ca(OH)₂ in pure water. [1 point]

c. Calculate the molar solubility of Ca(OH)₂ in 0.10 M Ca(NO₃)₂. [2 points]

d. In the box below, complete a particle representation diagram that includes <u>four</u> water molecules with proper orientation around the Ca²⁺ ion. [1 point]

75 Polyatomic Ions

1st six-weeks

<u>N</u>ick the <u>C</u>amel <u>ate</u> an <u>I</u>cky <u>Cl</u>am for <u>S</u>upper in <u>P</u>hoenix with his <u>Br</u>os

NO_3^-	nitrate	ClO ₃ ⁻ chlorate		PO ₃ ³⁻ pho	osphite
NO_2^-	nitrite	ClO ₂ ⁻ chlorite		BrO ₃ ⁻ brou	mate
CO_{3}^{2-}	carbonate	SO ₄ ^{2–} sulfate		BrO ₂ ⁻ brou	mite
IO_3^-	iodate	SO ₃ ^{2–} sulfite		Consonants	= # of Oxygen
IO ₂ ⁻	iodite	PO ₄ ^{3–} phosphate		Vowels = Ch	arge
2 nd six	-weeks				Difference in
ClO_4^-	perchlorate	IO ⁻ hypoiodite			Oxygen from ATE
ClO-	hypochlorite	BrO ₄ ⁻ perbromate		Perate	+1
10	neriodate	BrO^- hypohromite		Ate	0
104	periodate	bio hypobronnice		Hypoite	-2
3 rd six	weeks				
H ₂ PO ₄ -	dihydrogen phosphate		HCO ₃ -	hydrogen carbonate	or bicarbonate
HPO ₄ ²⁻	hydrogen phosphate		HSO ₄ ⁻	hydrogen sulfate	
4 th six-	weeks				
NH ₄ +	ammonium	L	OH-	hydroxide	
$C_2H_3O_2$	or CH ₃ COO ⁻ acetate		H_3O^+	hydronium	
5 th six-	weeks				
MnO ₄ -	permanganate	CrO ₄ ^{2–} chromate			
CN ⁻	cyanide	$Cr_2O_7^{2-}$ dichromate			
6 th six-	weeks				
				Acid Nome	nclature
O ₂ ²⁻	peroxide	$C_4H_4O_6^{2-}$ tartrate		Binary	Hydroic
$S_2O_3^{2-}$	thiosulfate	C ₂ O ₄ ²⁻ oxalate		ite	OUS

Polyatomic Ions

Br-Based lons		C-Based lons	
BrO	hypobromite	CO ₃ ²⁻	carbonate
BrO ₂	bromite	HCO ₃	hydrogen carbonate or bicarbonate
BrO ₃	bromate	$C_2H_3O_2$ or CH_3COO	acetate
BrO ₄	perbromate	C ₄ H ₄ O ₆ ²⁻	tartrate
		C ₂ O ₄ ²⁻	oxalate
Cr-Based Io	<u>ns</u>		
CrO ₄ ²⁻	chromate	Cl-Based lons	
$Cr_2O_7^{2-}$	dichromate	CIO	hypochlorite
		CIO ₂	chlorite
I-Based Ion	<u>IS</u>	CIO ₃	chlorate
IO	hypoiodite	ClO ₄	perchlorate
IO ₂	iodite		
IO ₃	iodate	N-Based Ions	
IO4	periodate	NO ₂	nitrite
		NO ₃	nitrate
P-Based Ior	<u>IS</u>	NH4 ⁺	ammonium
PO ₃ ³⁻	phosphite		
PO4 ³⁻	phosphate	S-Based lons	
HP04 ²⁻	hydrogen phosphate	SO ₃ ²⁻	sulfite
H ₂ PO ₄	dihydrogen phosphate	504 ²⁻	sulfate
		HSO4	hydrogen sulfate
Other lons		$S_2O_3^{2-}$	thiosulfate
CN	cyanide		
O ₂ ^{2⁻}	peroxide	Acid & Base lons	
MnO ₄	permanganate	H_3O^+	hydronium
		OH	hydroxide

1	1 H ¹																	8 2 He
	1.008 Hydrogen 3	2			Atorr	ic number	Ľ	- 14	_				ო თ	4 0	5	œ و	r 6	4.00 Helium 10
~	Li	Be				Svmbol	_	ï					В	C	Z	0	ц	Ne
	6.94 Lithium	9.01 Bervllium			Atc	omic mass		28.09					10.81 Boron	12.01 Carbon	14.01 Nitrogen	16.00 ^{0xygen}	19.00 Fluorine	20.18 ^{Neon}
	11	12						Silicon -	Na	me			13	14	15	16	17	18
m	Na	Mg											Al	Si	Р	S	CI	Ar
)	22.99 Sodium	24.30 Magnesium											26.98 Aluminum	28.09 Silicon	30.97 Phosphorus	32.06 Sulfur	35.45 Chlorine	39.95 Argon
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	>	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.10	40.08 Calcium	44.96 Scandium	47.90 ^{Titanium}	50.94 Vanadium	52.00 Chromium	54.94	55.85 Imn	58.93 Cohalt	58.69 Nickel	63.55 Conner	65.39 ^{Zinc}	69.72 Gallium	72.59 Germanium	74.92 Arsenic	78.96 Selenium	79.90	83.80 Krvnton
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
L)	Rb	Sr	Y	Zr	qN	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	Ι	Xe
)	85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.10	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.91	131.29
	55	56	57	72	73	74	75	76		78 78	79	80	81	82	83	84	85 85	86
y	Cs	Ba	*La	Hf	Та	ð	Re	0s	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
)	132.91 Cesium	137.33 ^{Barium}	138.91	178.49 ^{Hafnium}	180.95 Tantalum	183.85 Tungsten	186.21 ^{Rhenium}	190.2 ^{Osminm}	192.2 Iridium	195.08	196.97 Gold	200.59 Mercury	204.38 Thallium	207.2 Lead	208.98 ^{Bismuth}	(209) Polonium	(210) Astatine	(222) ^{Radon}
	87	88	89	104	105	106	107	108	109	110	111	<i>C</i>		5				
2	Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
	(223) Francium	226.02 Radium	227.03 Actinium	(261) Rutherfordium	(262) Dubnium	(266) Seaborgium	(264) ^{Bohrium}	(277) Hassium	(268) Meitnerium	(271) Darmstadtium	(272) Roentgenium							
				58	59	09	61	62	63	64	65	99	67	68	69	70	71	
	*Lanth	hanide S	eries	Ce	\Pr	Nd	Pm	Sm	Eu	Gd	$\mathbf{T}\mathbf{b}$	Dy	Ho	Er	Tm	Υb	Lu	
				140.12 Cerium	140.91	144.24 Neodvmium	(145) Promethium	150.4 ^{Samarium}	151.97 Euronium	157.25 Gadolinium	158.93 Terbium	162.5 Dvsprosium	164.93 ^{Holmium}	167.26 Erhium	168.93 Thulium	173.04 Vtterhium	174.97 Lutetium	
			•	90	91	92	93	94	95	96	97	98	66	100	101	102	103	
	†Acti	inide Sei	ies	$\mathbf{T}\mathbf{h}$	Pa	N	Np	Pu	Am	Cm	Bk	Cf	ES	Fm	рМ	No	Lr	
	1		}	232.04 Thorium	231.04 Protactnium	238.03 Uranium	(237) Neptumium	(244) Plutonium	(243) Americium	(247) ^{Curium}	(247) ^{Berkelium}	(251) Californium	(252) Einsteinium	(257) Fermium	(258) Mendelevium	(259) Nobelium	(262) Lawrencium	

PERIODIC TABLE OF THE ELEMENTS

77

AP® CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

L, mL = liter(s), milliliter(s) g = gram(s) nm = nanometer(s) atm = atmosphere(s)	mm Hg = millimeters of mercury J, kJ = joule(s), kilojoule(s) V = volt(s) mol = mole(s)
ATOMIC STRUCTURE $E = hv$ $c = \lambda v$	$E = \text{energy}$ $\nu = \text{frequency}$ $\lambda = \text{wavelength}$ Planck's constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$ Electron charge, $e = -1.602 \times 10^{-19}$ coulomb
EQUILIBRIUM $K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, \text{ where } a \text{ A} + b \text{ B} \rightleftharpoons c \text{ C} + d \text{ D}$ $K_{p} = \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$ $K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$ $K_{b} = \frac{[OH^{-}][HB^{+}]}{[B]}$ $K_{w} = [H^{+}][OH^{-}] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$ $= K_{a} \times K_{b}$ $pH = -\log[H^{+}], pOH = -\log[OH^{-}]$ $14 = pH + pOH$ $pH = pK_{a} + \log\frac{[A^{-}]}{[HA]}$ $pK_{a} = -\log K_{a}, pK_{b} = -\log K_{b}$	Equilibrium Constants K_c (molar concentrations) K_p (gas pressures) K_a (weak acid) K_b (weak base) K_w (water)
KINETICS $\ln[A]_{t} - \ln[A]_{0} = -kt$ $\frac{1}{[A]_{t}} - \frac{1}{[A]_{0}} = kt$ $t_{1/2} = \frac{0.693}{k}$	k = rate constant t = time $t_{1/2} = \text{half-life}$

GASES, LIQUIDS, AND SOLUTIONS	P = pressure
	V = volume
PV = nRT	T = temperature
$P_A = P_{\text{total}} \times X_A$, where $X_A = \frac{\text{moles } A}{1 + 1 + 1 + 1}$	n = number of moles
A total moles	m = mass
$P_{total} = P_{\rm A} + P_{\rm B} + P_{\rm C} + \dots$	M = molar mass
m	D = density
$n = \frac{m}{M}$	KE = kinetic energy
$K = {}^{\circ}C + 273$	v = velocity
	A = absorbance
$D = \frac{m}{V}$	a = molar absorptivity
	b = path length
KE per molecule = $\frac{1}{2}mv^2$	c = concentration
Molarity, $M =$ moles of solute per liter of solution	Gas constant, $R = 8.314 \text{ J mol}^{-1} \text{K}^{-1}$
A = abc	$= 0.08206 \text{ L} \text{ atm mol}^{-1} \text{ K}^{-1}$
$m = u \sigma c$	$= 62.36 \text{ L torr mol}^{-1} \text{ K}^{-1}$
	1 atm = 760 mm Hg = 760 torr
	STP = 273.15 K and 1.0 atm
	Ideal gas at STP = 22.4 L mol^{-1}
THERMODYNAMICS/ELECTROCHEMISTRY	- heet
	q = heat
$q = mc\Delta T$	m = mass
$\Delta S^{\circ} = \sum S^{\circ}$ products $-\sum S^{\circ}$ reactants	T = temperature
	$S^{\circ} = \text{standard entropy}$
$\Delta H^{\circ} = \sum \Delta H_f^{\circ} \text{ products} - \sum \Delta H_f^{\circ} \text{ reactants}$	$H^{\circ} = \text{standard entropy}$
	G° = standard Gibbs free energy
$\Delta G^{\circ} = \sum \Delta G_f^{\circ}$ products $-\sum \Delta G_f^{\circ}$ reactants	n = number of moles
	E° = standard reduction potential
$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	I = current (amperes)
$= -RT \ln K$	q = charge (coulombs)
$= -nFE^{\circ}$	t = time (seconds)
$I = \frac{q}{t}$	Faraday's constant, $F = 96,485$ coulombs per mole
	$1 \text{ volt} = \frac{1 \text{ joure}}{1 \text{ coulomb}}$

\mathbf{S}	
<u> </u>	
Z	
773	
$\mathbf{\Sigma}$	
H	
[T]	
ΓT]	
I	
F	
•	
Ľ.	
\cup	
[T]	
\mathbf{m}	
<i>.</i> .	
\mathbf{O}	
\mathbf{U}	
ניי	

18	2	Не	4.00	10	Ne	20.18	18	Ar	39.95	36	Kr	83.80	54	Хе	131.29	86	Rn	(222)										
		17	, - ,	6	Н	19.00	17	CI	35.45	35	Br	79.90	53	Ι	126.91	85	At	(210)				ī	/1	Lu	174.97	103	Lr	(262)
		16		∞	0	16.00	16	S	32.06	34	Se	78.96	52	Te	127.60	84	Po	(209)				C T	/0	Чh	173.04	102	No	(229)
		ע ר		7	Ν	14.01	15	Ρ	30.97	33	As	74.92	51	Sb	121.75	83	Bi	208.98				¢,	69	Tm	168.93	101	Мd	(258)
		14		9	J	12.01	14	Si	28.09	32	Ge	72.59	50	Sn	118.71	82	Рb	207.2				¢,	98	Er	167.26	100	Fm	(257)
		13		S	В	10.81	13	AI	26.98	31	Ga	69.72	49	In	114.82	81	T	204.38				ŗ	9/	Ho	164.93	66	Es	(252)
								C 7	77	30	Zn	65.39	48	Cd	112.41	80	Hg	200.59				2	99	Dy	162.5	98	Cf	(251)
								T	TT	29	Cu	63.55	47	Ag	107.87	46	Au	196.97	111	Rg	(272)	Ĺ	ç0	Tb	158.93	67	Bk	(247)
									ΤO	28	Ni	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	(271)		64	Gd	157.25	96	Cm	(247)
								Ċ	y	27	Co	58.93	45	Rh	102.91	77	Ir	192.2	109	Mt	(268)	ć	63	Eu	151.97	95	Am	(243)
								C	β	26	Fe	55.85	44	Ru	101.10	76	0s	190.2	108	Hs	(277)	ć	79	Sm	150.4	94	Pu	(244)
								t	1	25	Mn	54.94	43	Tc	(86)	75	Re	186.21	107	Bh	(264)	Ţ	10	Pm	(145)	93	Np	(237)
									٥	24	Cr	52.00	42	Mo	95.94	74	Μ	183.85	106	Sg	(266)	Ċ	00	ΡN	144.24	92	n	238.03
								L	ŋ	23	Λ	50.94	41	ЧN	92.91	73	Ta	180.95	105	Db	(262)	C L	4c	Pr	140.91	91	Pa	231.04
								•	4	22	Ti	47.90	40	Zr	91.22	72	Hf	178.49	104	Rf	(261)	C L	85	Ce	140.12	06	Th	232.04
			_					c	S	21	Sc	44.96	39	Υ	88.91	57	*La	138.91	68	†Ac	227.03			Series			eries	
		c	1	4	Be	9.01	12	Mg	24.30	20	Ca	40.08	38	Sr	87.62	56	Ba	137.33	88	Ra	226.02			thanide (ctinide Se	
1	1	Η	1.008	n	Li	6.94	11	Na	22.99	19	K	39.10	37	Rb	85.47	55	Cs	132.91	87	Fr	(223)			*Lan			+A(