Student Name: \qquad
Class Period:

RRHS AP Chemistry

Unit 7:

Intro Equilibrium

Table of Contents

Content	Page Number(s)
Intro Resources	1-5
Unit 7 Objectives	6
Equilibrium Basics	7-10
Manipulating Reactions and K vs Q	11-14
Le Châtelier's Principle	15-26
Intro to RICE Tables	27-29
RICE Table Approximations	30-35
Everything but the Kitchen Sink Equilibria (mixed content review)	36-39
Solubility Equilibrium : Intro to Ksp	40-42
How much will dissolve?	43-44
Solubility Lab	45-48
Common Ion Effect	49-52
Precipitation: Q vs K	53-56
Solubility Summary Sheet	57
Unit 7 Multiple Choice Practice	58-60
Unit 7 Free Response Practice	61-71
Scratch (blank) paper	72-74
Polyatomic lons Lists	75-76
Complete Periodic Table (with element names!)	77
AP Chemistry Formula Chart	78-79

Class Info

Website: magicalchemists.weebly.com/ap-chemistry.html Email Address: kristina_lestik@roundrockisd.org
Remind Info:
A Day: Text @APLestikA to 81010
B Day: Text @APLestikB to 81010
Mastering Chemistry (Pearson textbook/homework)
https://www.pearsonmylabandmastering.com/northamerica/masteringchemistry/
You will need to get your course ID and access code from your teacher!
PERIODIC TABLE OF THE ELEMENTS

1																	18
H	2																He
${ }_{\text {coid }}^{3}$	2												14	15		17	400
Li	Be											B	c	N	0	F	Ne
${ }_{694}^{11}$	${ }^{909}$											${ }^{1089}$	${ }_{1201}^{14}$	${ }^{1401}$	${ }_{1600}^{16}$	${ }^{1990} 17$	${ }^{2018}$
Na	Mg											Al	Si	P	s	Cl	Ar
$\frac{29}{19}$	${ }^{2430}$	${ }^{21}$	${ }^{42}$	${ }^{23}$	${ }^{24}$	${ }^{25}$	${ }^{26}$	${ }^{27}$	${ }^{28}$	${ }^{29}$	12	${ }^{2098}$	${ }^{32}$	${ }^{33}$	${ }^{34}$	${ }^{35}$	${ }^{36}$
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
年10	${ }_{\text {4098 }}$	${ }^{499}{ }^{\text {49，}}$	$4{ }_{4}^{490}$	$\frac{5094}{44}$	5200	${ }_{4}^{594}$	${ }^{44}$	${ }_{\text {cisa }}^{45}$	${ }_{4} 46$	${ }^{47}$	${ }_{6}^{639}$	${ }^{49}$	${ }_{7250}$	${ }_{\text {7492 }}^{51}$	${ }_{\text {\％}}^{5} 5$	${ }^{53}$	${ }_{5}^{54}$
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
$8{ }^{854}$	${ }^{8,62}$	${ }_{89} 8$	${ }^{1122}$	2291	9599	（199）	0110	1027	1064	${ }_{1088}$	12.4	4，	，				
Cs	Ba	${ }^{\text {＊}}$ a	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	${ }^{\frac{1737}{88}}$	${ }_{\text {13991 }}^{118}$	${ }_{\text {cras }}^{\frac{1784}{104}}$	${ }_{\text {18095 }}^{105}$	${ }_{1835}^{1105}$	${ }_{\text {18621 }}^{107}$	${ }^{1902}$		${ }^{19508}$								
Fr	Ra	\dagger †c	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

	\％
$\bigcirc \bigcirc$	N
$\left\|\begin{array}{lll} \boldsymbol{E} & 0 \\ 0 & \underset{[}{6} & 0 \\ 0 \end{array}\right\|$	$\underset{\sim}{2} \text { N }$
	읏 圃
$\left\|\begin{array}{ccc} \hat{0} & 0 & 0 \\ \hline \end{array}\right\|$	の 또 N
$\left\|\begin{array}{lll} \circ & \underset{\sim}{\mathrm{N}} \end{array}\right\|$	\cdots～
$\left\|\begin{array}{lll} 1 & 0 & 0 \\ 0 & E & 0 \\ 0 \end{array}\right\|$	内
	\bigcirc 은
（lll	
$\left\|\right\|$	サ $\square^{\text {a }}$
	$\cdots \underset{\sim}{2} \underset{\sim}{0}$
	N \square ¢
$\left\|\begin{array}{lll} \mathfrak{n} & \dot{y} \\ \mathfrak{n} & \vdots \\ j \end{array}\right\|$	
∞	

＊Lanthanide Series

2nd Marking Period: October-December 2022								
Sunday	Monday	Tuesday	Wednesday	Thursday		Friday		Saturday
9 Oct.	10 Student Holiday/ Staff Developmen	11 A	$12 \text { PSAT }$	13	B		C	15
16	17 A	18 B	19 A	20	B	21	A	22
23	24 Student Holiday/ Staff Development	25 B	26 A	27	B	28	A	29
30	31 B	1 Nov. A	2 B	3	A	4	B	5
6	7 A	8 B	9 A	10	B	11	A	12
13	14 B	15 A	16 B	17	A	18	B	19

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
20 Nov	21 FALL BREAK	22 FALL BREAK	23 FALL BREAK	24 FALL BREAK	25 FALL BREAK	26
27	28 A	29 B	30 A	1 Dec. B	2 A	3
4	5 B	6 A	7 B	8 A	9 B	10
11	12	$\begin{aligned} & 13 \\ & \text { Exams 6, } 5 \end{aligned}$	14 Exams 3, 4	$15 \text { Exams 7, } 8$	16 BREAK BEGI NS!	17
18	19 WI NTER	20 BREAK	21 WI NTER	22 BREAK	23	24
25	26	27 WI NTER	28 BREAK	29 WI NTER	30 BREAK	31

AP ${ }^{\circledR}$ CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

```
L,mL = liter(s), milliliter(s) mm Hg = millimeters of mercury
g = gram(s) J, kJ = joule(s), kilojoule(s)
nm = nanometer(s) V = volt(s)
atm = atmosphere(s) mol = mole(s)
```


ATOMIC STRUCTURE

$$
\begin{aligned}
& E=h v \\
& c=\lambda v
\end{aligned}
$$

$$
\begin{aligned}
E & =\text { energy } \\
\nu & =\text { frequency } \\
\lambda & =\text { wavelength }
\end{aligned}
$$

Planck's constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Avogadro's number $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Electron charge, $e=-1.602 \times 10^{-19}$ coulomb

EQUILIBRIUM

$$
\begin{aligned}
K_{c} & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}, \text { where } a \mathrm{~A}+b \mathrm{~B} \rightleftarrows c \mathrm{C}+d \mathrm{D} \\
K_{p} & =\frac{\left(P_{\mathrm{C}}\right)^{c}\left(P_{\mathrm{D}}\right)^{d}}{\left(P_{\mathrm{A}}\right)^{a}\left(P_{\mathrm{B}}\right)^{b}} \\
K_{a} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
K_{b} & =\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HB}^{+}\right]}{[\mathrm{B}]} \\
K_{w} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} \\
& =K_{a} \times K_{b} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right], \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
14 & =\mathrm{pH}+\mathrm{pOH} \\
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{p} K_{a} & =-\log K_{a}, \mathrm{p} K_{b}=-\log K_{b}
\end{aligned}
$$

Equilibrium Constants

K_{c} (molar concentrations)
K_{p} (gas pressures)
K_{a} (weak acid)
K_{b} (weak base)
K_{w} (water)

KINETICS

$$
\begin{aligned}
\ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0} & =-k t \\
\frac{1}{[\mathrm{~A}]_{t}}-\frac{1}{[\mathrm{~A}]_{0}} & =k t \\
t_{1 / 2} & =\frac{0.693}{k}
\end{aligned}
$$

$$
\begin{aligned}
k & =\text { rate constant } \\
t & =\text { time } \\
t_{1 / 2} & =\text { half-life }
\end{aligned}
$$

GASES, LIQUIDS, AND SOLUTIONS

$$
\begin{aligned}
P V & =n R T \\
P_{A} & =P_{\text {total }} \times X_{\mathrm{A}}, \text { where } X_{\mathrm{A}}=\frac{\text { moles A }}{\text { total moles }} \\
P_{\text {total }} & =P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\ldots \\
n & =\frac{m}{M} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273 \\
D & =\frac{m}{V}
\end{aligned}
$$

$K E$ per molecule $=\frac{1}{2} m v^{2}$
Molarity, $M=$ moles of solute per liter of solution

$$
A=a b c
$$

$P=$ pressure
$V=$ volume
$T=$ temperature
$n=$ number of moles
$m=$ mass
$\boldsymbol{M}=$ molar mass
$D=$ density
$K E=$ kinetic energy
$v=$ velocity
$A=$ absorbance
$a=$ molar absorptivity
$b=$ path length
$c=$ concentration
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

$$
=62.36 \mathrm{~L}^{2} \text { torr } \mathrm{mol}^{-1} \mathrm{~K}^{-1}
$$

$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ torr
STP $=273.15 \mathrm{~K}$ and 1.0 atm
Ideal gas at $\mathrm{STP}=22.4 \mathrm{~L} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
q & =\text { heat } \\
m & =\text { mass } \\
c & =\text { specific heat capacity } \\
T & =\text { temperature } \\
S^{\circ} & =\text { standard entropy } \\
H^{\circ} & =\text { standard enthalpy } \\
G^{\circ} & =\text { standard Gibbs free energy } \\
n & =\text { number of moles } \\
E^{\circ} & =\text { standard reduction potential } \\
I & =\text { current (amperes) } \\
q & =\text { charge (coulombs) } \\
t & =\text { time (seconds) }
\end{aligned}
$$

Faraday's constant, $F=96,485$ coulombs per mole of electrons
1 volt $=\frac{1 \text { joule }}{1 \text { coulomb }}$

What to Do
Be $\underline{\text { ACTIVE in while learning/studying: }}$
- Close your booklet and try problems on your own with
just a periodic table and formula chart! Only check your
answer/work when you've finished, or you can't go any
farther.
- Use flashcards (physical or digital)
- Struggle with challenging problems and keep trying, even
if you're stuck initially (or convinced you're doing it
wrong)

What NOT to Do

Be passive while learning/studying:

- Re-read over your booklet and practice problems you've already completed
- Ask your friend or look up the answer if you don't immediately know how to do the problem

Focus when studying

- Decrease distractions while studying; don't read texts, check social media, or watch Netflix while studying. Put your phone out of sight/hearing.

Use Intensity when studying

- You control the effort that you apply in your work! 30 minutes of high focus, high intensity study can be better than 2 hours of unfocused, low energy multi-tasking.

Space out studying over time

- Study a little bit of chemistry most days
- Start long-term homework (like Mastering Chem or lab reports) the day they're assigned, and work a little bit every day or two
- Less is more! Spaced practice studying is more effective than LONG hours of "studying" with multitasking and little focus.

Focus when studying
-Decrease distractions while studying; don't read texts, check social media, or watch Netflix while studying. Put your phone out of sight/hearing.
Use Intensity when studying
- You control the effort that you apply in your work! 30
minutes of high focus, high intensity study can be better
than 2 hours of unfocused, low energy multi-tasking.

- Study while checking/writing texts, checking social media, and/or watching Netflix.
- Keep your computer or tv on in the background

Low intensity/low effort

- Look over problems and try them "in your head" but then just look up the answer
- Use flashcards but don't try to recall the info on the other side before looking at the answer

Cram

- Only study for quizzes/tests the night before
- Start Mastering Chem or your lab report only 1-2 days before it's due
- Study for many hours at a time all at once

Interleave your Studying

- Study more than just one type of problem; mix it up and jump between different concepts
- Review and practice old units while studying (especially important since AP Chem assessments are cumulative!)

One Concept Studying

- Study only one type of problem, and practice those problems over and over
- Don't review older content or units while studying

Test Yourself!

- The best way to prepare for a test is to take a test!
- Time yourself while trying practice problems
- Access only the AP Periodic Table and Formula Chart when practicing problems

Open Notes Practice

- Use your notes, friends, and/or the internet while trying practice problems
- Give yourself unlimited time for each problem

AP Chemistry Big Ideas

BIG IDEA 6 - Any bond or intermolecular attraction that can be formed can be broken. These processes are in a dynamic competition, sensitive to initial conditions and external perturbations.

- Enduring Understanding 6.A: Chemical equilibrium is a dynamic, reversible state in which rates of opposing processes are equal.
- Enduring Understanding 6.B: Systems at equilibrium are responsive to external perturbations, with the response leading to a change in the composition of the system.
- Enduring Understanding 6.C: Chemical equilibrium plays an important role in acid-base chemistry and solubility.
- Enduring Understanding 6.D: The equilibrium constant is related to temperature and the difference in Gibbs free energy between reactants and products.

Equilibrium: Let's Get Balanced!

Dynamic Equilibrium: A Quick Review

1. The concentrations of all reactants and products remain \qquad with time.
2. The reaction is proceeding in the forward and reverse direction simultaneously and at the \qquad rate.
3. All macroscopic variables (such as concentration, partial pressure, and temperature) do \qquad change over time, so nothing \qquad to be happening.
4. When equilibrium has been reached, \qquad $=K$.
5. Equilibrium is temperature dependent! Change the temperature, change \qquad of products to reactants.

The Equilibrium Constant, \boldsymbol{K} (the Law of Mass Action): relates the concentrations of reactants and products at equilibrium at a given temperature.

$$
\begin{gathered}
\text { For the general reaction: } \mathrm{aA}+\mathrm{bB} \leftrightharpoons \mathrm{cC}+\mathrm{dD} \\
K_{c}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}=\frac{[\text { Products }]^{\text {coefficient }}}{[\text { Reactants }]^{\text {coefficient }}}
\end{gathered}
$$

- Each concentration is raised to the power of its stoichiometric coefficient in the balanced equation.
- Note: Only use \qquad and \qquad substances (NO solids or pure liquids!)
- There are NO \qquad for the equilibrium constant, K (they cancel out).

Let's Practice!

1. The decomposition of aqueous $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ is allowed to come to equilbrium at 298 K . The measured equilibrium concentrations are $\left[\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}\right]=0.025 \mathrm{M}$ and $\left[\mathrm{CO}_{2}\right]=2.78 \mathrm{M}$. What is the value of the equilibrium constant at this temperature?

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

2. Consider the following reaction:

$$
2 \mathrm{COF}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CF}_{4}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=2.00 \text { at } 1000^{\circ} \mathrm{C}
$$

In an equilibrium mixture, the concentration of COF_{2} is 0.255 M and the concentration of CF_{4} is 0.118 M . What is the equilibrium concentration of CO_{2} ?

What does K mean?

The equilibrium constant, K, tells you:

- the ratio of products to reactants when a given reaction reaches its \qquad free energy state and "stops".

$\begin{aligned} & \text { Large } K \\ & K \gg 1 \end{aligned}$		Intermediate K$K \approx 1$		$\begin{gathered} \text { Small } K \\ K \ll 1 \end{gathered}$	
Product-favored		Neither		Reactant-Favored	
Reactants	$\begin{aligned} & \Delta \Delta \Delta \Delta) \\ & \text { Products } \end{aligned}$	$\begin{aligned} & 0000 \\ & 0000 \\ & 0000 \\ & \text { Reactants } \end{aligned}$	$\begin{aligned} & \text { Products } \end{aligned}$	000000 000000 000000 000000 Reactants	Products
Mostly products		Significant amounts of reactants and products		Mostly reactants	
Forward reaction is thermodynamically favorable				Reverse reaction is thermodynamically favorable	

Completion Reactions vs Equilibrium Reactions

Complete Reaction: Complete consumption of reactants.
$A \rightarrow B$

Equilibrium: Reaction achieves
 equilibrium by reaching the lowest state of energy.

Completion reactions:

- Non-reversible
- \qquad of reactants convert to products
- Example: combustion

Equilibrium reactions:

- Reversible
- Reaction will occur until lowest energy state is reached
- Example: weak acid dissolution

You can think of K as measuring how close a reaction will go towards 100% completion:

- High $\mathrm{K}=$ reaction came pretty close to completely turning reactants into products
- Low K = reaction did NOT come close to turning all reactants into products, mostly reactants just hung around

Kinetic Control: when a reaction is thermodynamically favorable ($K>1$), but products form sooooooo slowly that it appears the reaction isn't happening (i.e., kinetically unfavorable)

Example Question: For a given reaction $A \rightleftharpoons B, \Delta H=-2.3 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta \mathrm{S}=+25.9 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. A student tries the reaction in lab, letting the reaction run over time. After two days. she measures the composition of her sample and discovers that it is primarily composed of reactants. Which of the following best explains why this might occur?
a. This reaction is only thermodynamically favorable at low temperatures, and the student's lab must be too warm for the reaction to occur.
b. This reaction has a small equilibrium constant, K, and thus the [reactants] will be much greater than [products] when the reaction system reaches its most stable state.
c. This reaction has an extremely high activation energy, and thus the reaction rate is so slow no products will be observed despite its thermodynamic favorability.
d. This reaction is only thermodynamically favorable at high temperatures, therefore the lab conditions are too cold for the reaction to occur in measurably quantities.

In order to convey additional information, the equilibrium constant K may also have a \qquad to give information about the type of reaction being studied.

However, in \qquad cases K is still defined as the ratio of products to reactants!

Type of Reaction		Reaction	Equilibrium Expression, K
General	$K_{e q}$	$\mathrm{aA}+\mathrm{bB} \leftrightharpoons \mathrm{cC}+\mathrm{dD}$	$K=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
Concentration	K_{c}	$\mathrm{aA}(\mathrm{g})+\mathrm{bB}(\mathrm{g}) \leftrightharpoons \mathrm{cC}(\mathrm{g})+\mathrm{dD}(\mathrm{g})$	$K_{p}=\frac{\left(P_{C}\right)^{c}\left(P_{D}\right)^{d}}{\left(P_{A}\right)^{a}\left(P_{B}\right)^{b}}$
Pressure (only for gases!)	K_{p}	$\mathrm{aA}(\mathrm{s}) \leftrightharpoons \mathrm{A}^{+}(\mathrm{aq})+\mathrm{B}^{-}(\mathrm{aq})$	$K_{s p}=\left[A^{+}\right]\left[B^{-}\right]$
Dissolving a solid in water	$K_{s p}$	AB	

$K_{p}=$ Ratio of Partial Pressures

For the general reaction: $a A+b B \rightleftharpoons c C+d D$
$K_{p}=\frac{\left(P_{C}\right)^{c}\left(P_{D}\right)^{d}}{\left(P_{A}\right)^{a}\left(P_{B}\right)^{b}}=\frac{\left(P_{\text {products }}\right)^{\text {coefficient }}}{\left(P_{\text {reactants }}\right)^{\text {coefficient }}} \quad$ where P is the partial pressure of the gas
*Note: K_{c} can be converted into K_{p}, but that conversion is no longer AP tested! ;D

Let's Practice!

1. Given the following reaction, with $\mathrm{K}_{\mathrm{p}}=109$ at $25^{\circ} \mathrm{C}: 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOBr}(\mathrm{g})$

If the equilibrium partial pressure of bromine gas is 0.0159 atm and the equilibrium partial pressure of NOBr is 0.0768 , calculate the equilibrium partial pressure of NO:
2. The reaction for the formation of nitrosyl chloride: $2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g})$ was studied at $25^{\circ} \mathrm{C}$. The pressures at equilibrium were found to be $\mathrm{P}_{\mathrm{Nocl}}=1.2 \mathrm{~atm}, \mathrm{P}_{\mathrm{NO}}=0.050 \mathrm{~atm}$ and $\mathrm{P}_{\mathrm{Cl} 2}=0.30 \mathrm{~atm}$. Write the equilibrium expression, K_{p}, for this reaction and calculate its value at $25^{\circ} \mathrm{C}$.

Manipulating Reactions and the Effect on K

1. Stoichiometric Coefficients: If you \qquad the coefficients in the equation by a factor,
\qquad the equilibrium constant to the same factor to get the equilibrium constant for the reaction.

$$
\begin{array}{ll}
2 \mathrm{X}+\mathrm{Y} \leftrightarrow 2 \mathrm{Z} & K \\
\mathrm{X}+\frac{1}{2} \mathrm{Y} \leftrightarrow \mathrm{Z} & K^{\frac{1}{2}} \\
4 \mathrm{X}+2 \mathrm{Y} \leftrightarrow 4 \mathrm{Z} & K^{2}
\end{array}
$$

2. Reversing Equations: When the equation is written in \qquad take the \qquad of K to get the equilibrium constant for the reaction.

$$
\begin{array}{lr}
2 \mathrm{X}+\mathrm{Y} \leftrightarrow 2 \mathrm{Z} & K \\
2 \mathrm{Z} \leftrightarrow 2 \mathrm{X}+\mathrm{Y} & \frac{1}{K}
\end{array}
$$

3. Adding Equations: If you \qquad two or more chemical equations to get the overall reaction (like in Hess's Law), \qquad the respective K 's to get the equilibrium constant for the reaction.

$$
K_{\text {total }}=K_{1} \times K_{2} \times K_{3} \ldots
$$

Let's Practice!

1. The Haber Process is a famous industrial method for producing ammonia from nitrogen and hydrogen gases:

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=3.8 \times 10^{4} \text { at } 127^{\circ} \mathrm{C}
$$

a. Calculate the value of the equilibrium constant, K_{c}, at $127^{\circ} \mathrm{C}$ for the reaction: $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
b. Calculate the value of K_{c} at $127^{\circ} \mathrm{C}$ for this reaction: $1 / 2 \mathrm{~N}_{2}(\mathrm{~g})+3 / 2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})$
c. Calculate the value of K_{c} at $127^{\circ} \mathrm{C}$ for this reaction: $6 \mathrm{NH}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{~N}_{2}(\mathrm{~g})+9 \mathrm{H}_{2}(\mathrm{~g})$

THE REACTION QUOTIENT, Q: When you need to know the answer to the question, "Is the system at equilibrium?"
A: The answer can be \qquad or \qquad !

$$
\text { For the general reaction: } \mathrm{aA}+\mathrm{bB} \rightleftharpoons \mathrm{cC}+\mathrm{dD}
$$

$$
Q=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \quad \text { or } \quad \frac{\left(P_{C}\right)^{c}\left(P_{D}\right)^{d}}{\left(P_{A}\right)^{a}\left(P_{B}\right)^{b}}
$$

Reminder:

- Q has the appearance of K (same exact ratio!)
- But... Q can be calculated at \qquad point in the reaction progress, not only at equilibrium!

What does \mathbf{Q} mean?

1. If K \qquad \boldsymbol{Q}, system not at equilibrium: forward reaction is favored (shift right) to make $Q=K$.
2. If K \qquad \boldsymbol{Q}, the system is at equilibrium.
3. If K \qquad \boldsymbol{Q}, system not at equilibrium: reverse reaction is favored (shift left) to make $\mathrm{Q}=\mathrm{K}$.

The Kinetics of Equilbrium

1. If equilibrium is approached from the left (starting with \qquad),
a. the rate of the forward reaction \qquad to a constant, non-zero rate (i.e. it slows down over time until equilibrium is reached).
b. the rate of the reverse reaction \qquad to a constant, non-zero rate (i.e. it speeds up over time until equilibrium is reached).
2. If equilibrium is approached from the right (starting with \qquad _),
a. the rate of the forward reaction \qquad to a constant, non-zero rate (i.e. it speeds up over time until equilibrium is reached).
b. the rate of the reverse reaction \qquad to a constant, non-zero rate (i.e. it slows down over time until equilibrium is reached).
3. Time required to reach equilibrium does \qquad depend on the equilibrium constant, K !
4. Regardless of initial conditions, at a given \qquad a reaction will reach equilibrium with the same ratio of products to reactants.

In Summary

Current conditions	$K>Q$	$K \approx Q$	$K<Q$
change needed for system to reach equilibrium	shift right (make more products)	already at equilibrium	shift left (make more reactants
reaction rates	forward > reverse reaction rate (until equilibrium reached)	forward \approx reverse reaction rate	forward < reverse reaction rate (until equilibrium reached)

Thermodynamics:

- Will a reaction happen spontaneously?
- Determined by $\Delta \mathrm{G}$ (i.e., combo of $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$)

Kinetics:

- How fast will a reaction happen?
- Determined by activation energy, E_{a}, and temperature

Equilibrium vs Kinetics: k vs K !

Equilibrium	Kinetics
$K=$ equilibrium constant	$k=\ldots$
What we canstant determine about k using $K:$	
$\bullet \quad$ Relative rates of forward and reverse reactions (by comparing K vs Q)	
What we can't determine about k using K :	
• Absolute rates of forward and reverse reactions	
You CANNOT compare the rate of one reaction to another by comparing their K values!	

Let's Practice!

1. At 1000 K , the value of K_{p} for the reaction $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ is 0.338 . Predict which direction the reaction will proceed toward equilibrium if the initial partial pressures are: $\mathrm{P}_{\mathrm{sO}}=0.16 \mathrm{~atm}, \mathrm{P}_{\mathrm{sO2}}=0.41 \mathrm{~atm}$, and $\mathrm{P}_{\mathrm{o} 2}=2.5$ atm.
2. For the synthesis of ammonia at $500^{\circ} \mathrm{C}, \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$, the equilibrium constant is 6.0×10^{-2}. Predict the direction in which direction the system will shift to reach equilibrium if $\left[\mathrm{NH}_{3}\right]_{\text {initial }}=1.0 \times 10^{-4} \mathrm{M},\left[\mathrm{N}_{2}\right]_{\text {initial }}=5.0$ M , and $\left[\mathrm{H}_{2}\right]_{\text {initial }}=1.0 \times 10^{-2} \mathrm{M}$ at $500^{\circ} \mathrm{C}$.
3. The equilibrium partial pressure of Br_{2} is 4.00 atm and that of NOBr is 8.00 atm .

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NOBr}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{p}}=100
$$

Using the equation above, determine the equilibrium partial pressure of nitrogen monoxide, NO, at equilibrium.
a. $\quad 0.400 \mathrm{~atm}$
b. 0.566 atm
c. $\quad 1.77 \mathrm{~atm}$
d. $\quad 5.83 \mathrm{~atm}$
4. The value of the equilibrium constant, K_{c}, at $25^{\circ} \mathrm{C}$ is 8.1 for the following reaction: $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$. What must happen for the reaction to reach equilibrium if the initial concentrations of all three species was 2.0 M ?
a. The rate of the forward reaction would increase, and $\left[\mathrm{SO}_{3}\right]$ would decrease.
b. The rate of the reverse reaction would increase, and $\left[\mathrm{SO}_{2}\right]$ would decrease.
c. Both the rate of the forward and reverse reactions would increase, and the value for the equilibrium constant would also increase.
d. No change would occur in either the rate of reaction or the concentrations of any of the species.
5. For the reaction $2 \mathrm{X}(\mathrm{g})+\mathrm{Y}(\mathrm{g}) \leftrightarrow 2 \mathrm{Z}(\mathrm{g}), \mathrm{K}_{\mathrm{c}}=4.0 \times 10^{4}$. Determine the value of the equilibrium constant, K_{c}, for the following reaction:

$$
2 \mathrm{Z}(\mathrm{~g}) \leftrightarrow 2 \mathrm{X}(\mathrm{~g})+\mathrm{Y}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=? ?
$$

a. 2.5×10^{-5}
b. $\quad 2.5 \times 10^{-4}$
c. 4.0×10^{-5}
d. 4.0×10^{-4}

Le Châtelier's Principle

If a "stress" (\qquad) is applied to a system at equilibrium, equilibrium will shift in the direction that will partially relieve that stress.

Nothing can ever completely reverse the effects of stress! (Tell me about it, am I right? ; P)

Changes in Concentration

- Increasing the concentration of a reactant causes system to shift right to make more \qquad -.
- Increasing the concentration of a product causes system to shift left to form more \qquad .
- Decreasing the concentration of a product causes system to shift right to form more \qquad -.
- Decreasing the concentration of a reactant causes system to shift left to make more \qquad .
Important note: adding or subtracting the amount of a pure solid or liquid will NOT cause a shift.

A change in concentration of reactants or products will \qquad affect the value of K.

$$
\mathrm{A}(a q)+\mathrm{B}(a q) \rightleftarrows \mathrm{C}(a q)+\mathrm{D}(a q)
$$

Stress	Effect	Stress	Effect
Add A or B	reaction will shift \qquad to make more \qquad	Add C or D	reaction will shift \qquad to make more \qquad
Remove A or B	reaction will shift \qquad to make more \qquad	Remove C or D	reaction will shift \qquad to make more \qquad

$$
\text { Example: } \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)
$$

What will happen to the equilibrium system above when the following stresses are applied?

Stress	Effect	Stress	Effect
Add N_{2}	reaction will shift \qquad to make more \qquad	Add H_{2}	reaction will shift \qquad to make more \qquad
Add NH_{3}	reaction will shift \qquad to make more \qquad	Remove NH_{3}	reaction will shift \qquad to make more \qquad

Changes in Temperature

Changes in temperature may easily be treated as changes in concentration if you think of heat as a reactant (endothermic reaction) or product (exothermic reaction).

Exothermic Reactions: Heat is a \qquad

$$
\mathrm{A}+\mathrm{B} \rightleftharpoons \mathrm{C}+56 \mathrm{~kJ}
$$

- Increasing temperature causes system to shift left. K will \qquad .
- Decreasing temperature causes system to shift right. K will \qquad -

Endothermic Reactions: Heat is a

\qquad

$$
\mathrm{D}+\mathrm{E}+43 \mathrm{~kJ} \rightleftharpoons \mathrm{~F}+\mathrm{G}
$$

- Increasing temperature causes system to shift right. K will \qquad .
- Decreasing temperature causes system to shift left. K will \qquad .
**Only a change in \qquad will change the value of $K .{ }^{* *}$

Let's Practice!

1. Given the reaction: $\quad 2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g}) \quad+32.5 \mathrm{~kJ}$

What will happen to the equilibrium system above when the following stresses are applied?

Stress	Effect on Reaction System	Effect on K
Decrease the temperature	reaction will shift to make more__	The value of K will:
Add SO_{3}	reaction will shift to make more	The value of K will:
Increase the temperature	reaction will shift to make more	The value of K will:

2. When a certain amount of nitrogen gas and hydrogen gas are placed in a 1.5 L evacuated container and heated to 773 K , ammonia gas, NH_{3}, is formed according to the following equation: $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$. When equilibrium is established, 0.565 mol of $\mathrm{NH}_{3}(\mathrm{~g})$ is present in the flask. When the same reaction is carried out at 298 K , the number of moles of $\mathrm{NH}_{3}(\mathrm{~g})$ is much larger than 0.565 mol . Is the forward reaction endothermic or exothermic? Justify your answer.

Oh Shift: Le Châtelier and Rate of Reaction

A shift to the left or right does NOT say anything about the \qquad of the reaction!

For example, consider the reaction:

$$
A+B \rightleftharpoons C+\text { heat }
$$

If the temperature of this system was increased, equilibrium would shift to the left. This does \qquad mean that the rate will be slower! It simply means that a new equilibrium will be reached which has more A and B and less C .

Increasing temperature causes equilibrium to be reached more \qquad (regardless of shift!)

Changes in Pressure

Changes in pressure only affect equilibrium systems that have \qquad reactants and/or products.

- Increasing the pressure of a gaseous system causes system to shift to the side with \qquad gas particles.
- Decreasing the pressure of a gaseous system causes system to shift to the side with \qquad gas particles.
- If system has the \qquad number of moles of gas on both sides, changes in pressure have \qquad effect.
- Adding an inert gas does \qquad affect the location of equilibrium, since the partial pressures of the gases in the reaction are not affected.

Changes in Volume: The opposite of changes in pressure.

- Increasing the volume of a gaseous system causes system to shift to the side with \qquad gas particles.
- Decreasing the volume of a gaseous system causes system to shift to the side with \qquad gas particles.

A change in pressure or volume will \qquad affect the value of K.

Addition of a Catalyst: No effect on equilibrium position!

- Adding a catalyst increases the rate of both the forward and reverse reaction \qquad .
- Equilibrium will be reached more quickly. ;D

Example: $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g)$
What will happen to the equilibrium system above when the following stresses are applied?

Stress	Effect	Stress	Effect
Increase pressure	reaction will shift \qquad to make more \qquad	Ar(g) added	reaction will shift to make more \qquad
Increase volume	reaction will shift \qquad to make more \qquad	Decrease pressure	reaction will shift \qquad to make more \qquad

Let's Practice!

Consider the following equilibrium equation:

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{\mathrm{rxn}}=+2.1 \mathrm{~kJ} / \mathrm{mol}
$$

A vessel contains $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}, \mathrm{CaCO}_{3}(\mathrm{~s}), \mathrm{NO}_{2}(\mathrm{~g}), \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$, and $\mathrm{CO}_{2}(\mathrm{~g})$ at equilibrium. Predict how each of the following stresses will affect the variables specified.

Stress	Shift?	Effect on K?	Other Effect
CO_{2} is added.			The concentration of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ will:
CaCO_{3} is removed.			The concentration of CO_{2} will:
The volume is halved.			The amount of CaCO_{3} will:
$\mathrm{He}(\mathrm{g})$ is added.			The amount of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ will:
The temperature is decreased.			The concentration of CaCO_{3} will:
The pressure is decreased.			The concentration of CaCO_{3} will:
CaCO_{3} is added.			The concentration of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ will:
A catalyst is added.			The amount of CO_{2} will:
The volume is increased.			The concentration of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ will:
The temperature is increased.			The amount of CO_{2} will:

A Visual Summary of Le Châtelier's Principle

* a system at equilibrium
will respond to STRESS so as to reduce the stress

@equilibrium $\Delta G=\varnothing \quad Q=K \quad$ On w he hews
- 7 free energy is at a minimum

$Q \neq K$ and $\Delta G \neq 0$

* concentration and
pressure changes will change Q
* temperature
change will change K

Le Châtelier: How to FRQ

1. Identify stress (change) to the system.
2. Identify effect of stress on the equilibrium system: shift right, shift left, or no shift?
3. Explain how the shift you identified will counteract the original stress to re-establish equilibrium
4. Connect your explanation to the question asked (aka, answer the question. ;D)

Example FR Explanations

Example \#1: If the temperature of an exothermic reaction changes from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, what is the effect on equilibrium constant, K ?

- Stress? Increasing temperature
- Effect of stress? Shift left (or shift towards reactants)
- Counteract stress? Use up added heat
- Answer question (effect on K): increasing [reactants], decreasing [products] decreases value of K.

Final Answer: Increasing the temperature of an exothermic reaction will cause the system to shift left to use up the added heat and re-establish equilibrium. This shift increases the concentration of reactants and decreases the concentration of products, therefore the value of K decreases.

Example \#2: For the reaction $\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{g}) \rightleftharpoons \mathrm{C}(\mathrm{g})$, adding more $\mathrm{A}(\mathrm{g})$ to the reaction vessel will have what effect on the concentration of $\mathrm{B}(\mathrm{g})$?

- Stress? Adding $\mathrm{A}(\mathrm{g})=$ increasing $[\mathrm{A}]$, a reactant
- Effect of stress? Shift right (or shift towards products)
- Counteract stress? Use up some of the added A(g)
- Answer question (effect on concentration of B): decrease [B], because using up some A to create products also uses up B.

Final Answer: Adding more $\mathrm{A}(\mathrm{g})$ will increase the concentration of A , a reactant, and so the system will shift right to use up some of the extra A by making more product. Using up some A to make products will also use up some B, and so the concentration of B will decrease as the system shifts to re-establish equilibrium.

Example \#3: For the reaction $\mathrm{A}(\mathrm{g})+\mathrm{B}(\mathrm{s}) \rightleftharpoons \mathrm{C}(\mathrm{g})$, removing some $\mathrm{B}(\mathrm{s})$ from the reaction container will have what effect on the reaction mixture?

- Stress? No stress occurs: solids are not included in the equilibrium constant expression, K
- Effect of stress? n/a
- Counteract stress? n/a
- Answer question (effect on rxn mixture): no effect on location of equilibrium for the reaction mixture

Final Answer: Removing some $B(s)$ will have no effect, because solids are not included in the equilibrium constant expression, K, and thus don't affect the location of equilibrium for the reaction mixture.

Free Response Practice!

1. In the following reaction at chemical equilibrium, what is the effect on the reaction mixture if the volume of the reaction container is decreased? Explain.

$$
\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=181 \mathrm{~kJ}
$$

2. Consider the following endothermic reaction at chemical equilibrium. When the temperature of the reaction mixture is increased, what is the effect on $\mathrm{CaCO}_{3}(\mathrm{~s})$? Explain.

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

3. Adding additional KCl will have what effect on the reaction mixture, if the mixture was originally at chemical equilibrium? Explain.

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

Quick Review: Equilibrium Graphs
Equilibrium systems can be represented by two different graphs:

Rate of Reaction vs Time

time

[Reactants], [Products] vs Time

How can you use each graph to identify when equilibrium is reached?
a. Rate of Reaction vs Time: both forward and reverse reaction rates are \qquad .
b. [Reactants], [Products] vs Time: concentrations of reactants and products are \qquad , but not necessarily equal.

Le Châtelier's Principle: Interpreting Equilibrium Graphs

1) Applied stress: Change in Concentration

Concentration vs. Time	Rate vs. Time
Visual clues: 1) \qquad in the concentration of one reactant or product a. Spike UP if concentration \qquad b. Spike DOWN if concentration \qquad 2) \qquad change in the concentration of all other reactants and/or products until all concentrations are constant again	Visual clues: 1) \qquad in the rate of one direction a. Spike UP if concentration \qquad b. Spike DOWN if concentration \qquad 2) \qquad change in the other rate 3) until both rates are equal again

2) Applied Stress: Change in Temperature

Concentration vs. Time	Rate vs. Time
Visual clues: 1) \qquad change in the concentration of all reactants and products \rightarrow until all concentrations are constant again 2) Direction of shift determines which side increases/decreases concentration	Visual clues: 1) \qquad in the rate of one direction a. Spike UP if temperature \qquad b. Spike DOWN if temperature \qquad 2) \qquad change in the other rate 3) until both rates are equal again

Reminder: Nothing can ever completely undo the stress on the system!
Shifts predicted by Le Châtelier's principle only \qquad counteract the stress.

3) Applied stress: Addition of a Catalyst

Concentration vs. Time	Rate vs. Time
Visual clues: System reaches equilibrium at the \qquad concentrations but an \qquad time	Visual clues: Rate of forward and backward reactions increases \qquad

Graphing Practice!

Use the chemical equilibrium below and the graph above to answer the questions that follow.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

4. How many seconds does it take for the system to reach equilibrium the first time? \qquad
5. Calculate the value of the equilibrium constant at the time identified in \#4.
6. Identify a stress to the system that would cause the effects shown at $\mathrm{t}=20 \mathrm{~s}$. Explain.
7. If the change at $\mathrm{t}=35 \mathrm{~s}$ is due to an increase in temperature, is the reaction exothermic or endothermic? Justify your answer.

Use the following information to answer questions 1-3.
The following reaction is found at equilibrium at $25^{\circ} \mathrm{C}$:
$2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}=-198 \mathrm{~kJ} / \mathrm{mol}$

1. Which of the following would cause the reverse reaction to speed up?
a. Adding more SO_{3}
c. Raising the pressure
b. Lowering the temperature
d. Removing some SO_{2}
2. Which of the following would cause a reduction in the value for the equilibrium constant?
a. Increasing the amount of SO_{3}
c. Reducing the amount of O_{2}
b. Raising the temperature
d. Lowering the temperature
3. If initially only SO_{3} was added to the reaction vessel, what is true about the following values as the system approached equilibrium?
a. $\Delta \mathrm{G}>0$ and $Q>K$
b. $\quad \Delta \mathrm{G}<0$ and $Q>K$
c. $\quad \Delta \mathrm{G}>0$ and $Q<K$
d. $\quad \Delta \mathrm{G}<0$ and $Q<K$

Use the following information to answer questions 4-5.

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

4. Which two stresses will each cause the equilibrium to shift to the left?
a. increase $\left[\mathrm{H}_{2}\right]$, increase [CO]
c. decrease $\left[\mathrm{H}_{2}\right]$, increase $\left[\mathrm{H}_{2} \mathrm{O}\right]$
b. increase $\left[\mathrm{CO}_{2}\right]$, decrease [CO]
d. decrease $\left[\mathrm{CO}_{2}\right]$, decrease $\left[\mathrm{H}_{2} \mathrm{O}\right]$
5. Which of the following graphs represents the forward rate of reaction when $\mathrm{H}_{2} \mathrm{O}_{(g)}$ is added to the above equilibrium at time $t=1$?
A.

B.

C.

D.

6. Consider the following: $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})$. Initially, SO_{3} is added to an empty flask. How do the rate of the forward reaction and $\left[\mathrm{SO}_{3}\right]$ change as the reaction proceeds to equilibrium?

	Forward Rate	$\left[\mathrm{SO}_{3}\right]$		Forward Rate increases	$\left[\mathrm{SO}_{3}\right]$ increases	
a.	decreases	increases	c.	increas	decreases	d.
b.	decreases	increases	decreases			

7. The following reaction is found at equilibrium:
$\mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g}) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{l})$
$\Delta \mathrm{H}=-160.8 \mathrm{~kJ} / \mathrm{mol}$ Which of the following will cause this equilibrium to shift to the left?
a. add some CO
c. decrease the volume
b. remove some $\mathrm{Ni}(\mathrm{CO})_{4}$
d. increase the temperature
8. Consider the following reaction at chemical equilibrium: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$. At time t_{1}. heat is applied to the system. Which of the following best describes the equilibrium reaction and the change in K_{c} ?

9. A galvanic cell is constructed based on the following reaction: $\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Zn}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$. The observed voltage was found to be 0.95 volt instead of the standard cell potential, E°, of 1.10 volts. Which of the following could correctly account for this observation?
A. The cell had been running for a period of time.
B. The standard free energy of the cell, $\Delta \mathrm{G}^{\circ}$, is negative.
C. The Cu^{2+} solution was more concentrated than the Zn^{2+} solution.
D. The $\mathrm{Zn}(\mathrm{s})$ anode had been reduced in mass.
10. Consider the following equilibrium: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$. Which of the following shows the relationship between concentration and time as a result of adding a catalyst at time $t=1$?
A.

B.

C.

D.

11. The following reaction is found at equilibrium: $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$. When the volume of the system is decreased, the equilibrium shifts:
a. left since the reverse rate is greater than the forward rate.
b. left since the forward rate is greater than the reverse rate.
c. right since the reverse rate is greater than the forward rate.
d. right since the forward rate is greater than the reverse rate.

RICE Tables: Delicious, Delicious Equilibrium

Many equilibrium calculations are solved using \qquad tables: this is an organization method used to clearly track what happens as a reaction established equilibrium.

Tasty RICE

- $\mathbf{R}=$ Balanced \qquad
- $1=$ \qquad concentrations (or pressures) for each species in the reaction mixture
- $\mathbf{C}=$ \qquad in concentrations (or pressures) for each species as the system moves towards equilibrium: everything changes stoichiometrically!
- $\mathbf{E}=$ \qquad concentrations (or pressures) of each species when the system reaches equilibrium Note: If the amounts are given in moles BE WARY - you must convert to \qquad (M).

Example: Consider the reaction

$$
2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

A reaction container has an initial $\left[\mathrm{SO}_{3}\right]$ of 0.020 M . At equilibrium, $\left[\mathrm{SO}_{2}\right]=0.012 \mathrm{M}$. Calculate the value of the equilibrium constant.

Reaction	$2 \mathrm{SO}_{3}(\mathrm{~g})$	\rightleftharpoons	$\mathrm{O}_{2}(\mathrm{~g})$
Initial concentration			
Change			
Equilibrium concentration			

Now you try! Consider the following reaction: $2 \mathrm{CH}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
A reaction mixture at $1700^{\circ} \mathrm{C}$ initially contains $\left[\mathrm{CH}_{4}\right]=0.115 \mathrm{M}$. At equilibrium, the mixture contains $\left[\mathrm{C}_{2} \mathrm{H}_{2}\right]=0.035 \mathrm{M}$. What is the value of the equilibrium constant?

Questionable Q: Predicting the Direction of a Reaction with Yummy RICE!
If you're given initial concentrations of \qquad reactants and products, you need to calculate \qquad to predict the direction of shift \qquad using a RICE table to calculate equilibrium concentration.

Example: Consider the reaction: $2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=1.00 \times 10^{-6}$ At $298 \mathrm{~K}, 2.25$ moles of $\mathrm{NO}, 0.0749$ moles of N_{2}, and 0.0750 moles of O_{2} are placed into a 1.50 L flask and allowed to reach equilibrium. Calculate the equilibrium concentrations for each substance listed below at 298 K .

First, calculate Q. Which direction will the reaction shift?

Now you can make a RICE table! (Knowing which direction reaction shifts allows you to determine correct signs for x .)

Reaction			
Initial concentration			
Change			
Equilibrium concentration			

Now you can write your equilibrium expression and plug in with the values from above.

Finally, what are your equilibrium concentrations?

Check yourself!

Now you try! Consider the reaction: $\mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{ICI}(\mathrm{g}), \mathrm{K}_{\mathrm{p}}=81.9$ (at $25^{\circ} \mathrm{C}$).
A reaction mixture at $25^{\circ} \mathrm{C}$ initially contains $P_{I_{2}}=0.100 \mathrm{~atm}, P_{C l_{2}}=0.100 \mathrm{~atm}$, and $P_{I C l}=0.100 \mathrm{~atm}$. Find the equilibrium partial pressures of $\mathrm{I}_{2}, \mathrm{Cl}_{2}$, and ICl at this temperature.

Multiple Choice Practice!

1. Ammonia and oxygen react according to the following equilibrium: $4 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

A 2.0 liter flask is initially filled with 8.0 mol of oxygen and 6.0 mol of ammonia, and 6.0 mol of $\mathrm{H}_{2} \mathrm{O}$ are present when the system reaches equilibrium. How much oxygen is present at equilibrium?
a. $2.0 \mathrm{~mol} \mathrm{O}_{2}$
b. $\quad 3.0 \mathrm{~mol} \mathrm{O}_{2}$
c. $\quad 5.0 \mathrm{~mol} \mathrm{O}_{2}$
d. $\quad 6.0 \mathrm{~mol} \mathrm{O}_{2}$

RICE Approximations: Simplifying the Math

Sometimes RICE math can get complicated. Let's try an example!

1. What are the equilibrium concentrations of each chemical species in a 0.15 M solution of HCN at $22^{\circ} \mathrm{C}$?

$$
\mathrm{HCN}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{c}}=4.9 \times 10^{-10} \text { at } 22^{\circ} \mathrm{C}
$$

But wait! You should never actually have to use the \qquad equation on the AP Chemistry test. (Mastering Chem, however, is a different story... ;D)

But how can we solve a problem of this type without doing piles of math?

The " X is Negligible" Approximation

There are two common problem types where this approximation is valid:
a. Very \qquad K values (where $K<10^{-5}$ or Initial Molarity $\geq 1000 \times K$) when starting from reactants: in this case, barely any products will be made.
b. Very \qquad K values (where $\mathrm{K}>10^{5}$) when starting from products: in this case, barely any reactants will be made.

Note: The assumption about x being negligible only works when x is less than \qquad of the initial concentration, so you can check the validity of your assumption after solving for x !

Let's try that first problem again, this time using the " x is negligible" approximation.

1. What are the equilibrium concentrations of each chemical species in a 0.15 M solution of HCN at $22^{\circ} \mathrm{C}$?

$$
\mathrm{HCN}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{c}}=4.9 \times 10^{-10} \text { at } 22^{\circ} \mathrm{C}
$$

2. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, which of the following conditions allows you to conclude that the change in concentration, x, is negligible? (Multiple correct answers!)
a. At a constant temperature, $\left[\mathrm{NO}_{2}\right]=1.0 \mathrm{M}$ and $\mathrm{K}_{\mathrm{c}}=4.0 \times 10^{-7}$.
b. At a constant temperature, $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=1.0 \mathrm{M}$ and $\mathrm{K}_{\mathrm{c}}=4.0 \times 10^{-7}$.
c. At a constant temperature, $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]=1.0 \mathrm{M}$ and $\mathrm{K}_{\mathrm{c}}=4.0 \times 10^{6}$.
d. At a constant temperature, $\left[\mathrm{NO}_{2}\right]=1.0 \mathrm{M}$ and $\mathrm{K}_{\mathrm{c}}=4.0 \times 10^{6}$.
3. Consider the equilibrium reaction: $\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{I}(\mathrm{g})$, where $\mathrm{K}_{\mathrm{c}}=5.6 \times 10^{-12}$. If 1.58 moles of of $\mathrm{I}_{2}(\mathrm{~g})$ are placed into a 3.5 L reaction vessel, what are the equilibrium concentrations of the reactant and the product?

What if x isn't negligible??

The Perfect Square: if keeping "- x " is necessary, see if the problem is a perfect \qquad and thus easy to solve using delicious algebra.

Example: Consider the reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}), \mathrm{K}_{\mathrm{p}}=64$ (at $25^{\circ} \mathrm{C}$). A reaction mixture at $25^{\circ} \mathrm{C}$ initially contains $\mathrm{P}_{\mathrm{H}_{2}}=\mathrm{P}_{\mathrm{I}_{2}}=0.20 \mathrm{~atm}$. Find the equilibrium partial pressures of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI .

Now you try!

1. If the K_{p} for the following reaction is 2.4×10^{-9} and the initial concentration of CO_{2} is 2.00 atm, what are the partial pressures of the substances at equilibrium?

$$
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})
$$

2. A gas, $X Y(\mathrm{~g})$, decomposes according to the following reaction: $2 X Y(\mathrm{~g}) \rightleftharpoons X_{2}(\mathrm{~g})+Y_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{p}}=230$. A sample of each of the gases is places in a previously evacuated container, and the initial partial pressures of the gases are shown in the table below:

Gas	Initial Partial Pressure (atm)
XY	0.010
X_{2}	0.20
Y_{2}	2.0

If the temperature of the reaction mixture is held constant, in which direction will the reaction proceed? Explain.
3. For the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}), 1.0 \mathrm{~mol}$ of $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is placed in a 10.0 L reaction vessel at a constant temperature. $\mathrm{K}_{\mathrm{c}}=4.0 \times 10^{-7}$ for this temperature. Find the equilibrium concentrations.

Multiple Choice Practice!

4. Here is a general reaction with a K value of 16: $\quad A(a q)+B(a q) \rightleftharpoons 2 C(a q)$.

Initially, $[A]=[B]=2.0 \mathrm{M}$. Solve for the equilibrium concentration of each substance.
a. $[A]=[B]=0.67 \mathrm{M},[C]=1.3 \mathrm{M}$
b. $[A]=[B]=1.6 \mathrm{M},[\mathrm{C}]=0.88 \mathrm{M}$
c. $[A]=[B]=0.67 \mathrm{M},[C]=2.7 \mathrm{M}$
d. $[A]=[B]=0.50 \mathrm{M},[\mathrm{C}]=3.0 \mathrm{M}$
5. Consider the following equilibrium: $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g})$. Initially, the reaction was started by adding 10.0 M NOCl gas to a reaction vessel. At equilibrium, $[\mathrm{NO}]=2.0 \mathrm{M}$. What is the value of K_{c} ?
a. 0.63
b. 2.3
c. 4.0
d. 16
6. The reaction below came to equilibrium at a temperature of $100^{\circ} \mathrm{C}$. At equilibrium the partial pressure due to NOBr was 4 atm , the partial pressure due to NO was 4 atm , and the partial pressure due to Br_{2} was 2 atm. What is the equilibrium constant, K_{p}, for this reaction at $100^{\circ} \mathrm{C}$?

$$
2 \mathrm{NOBr}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})
$$

a. $1 / 4$
b. $1 / 2$
c. 1
d. 2
7. Consider the following: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$. Initially, $0.030 \mathrm{~mol} \mathrm{SO}_{2}$ and $0.030 \mathrm{~mol} \mathrm{O}_{2}$ are placed into a 1.0 L container. At equilibrium, there is $0.020 \mathrm{~mol} \mathrm{O}_{2}$ present. What is the $\left[\mathrm{SO}_{2}\right.$] at equilibrium?
a. $\quad 0.010 \mathrm{~mol} / \mathrm{L}$
b. $\quad 0.020 \mathrm{~mol} / \mathrm{L}$
c. $\quad 0.030 \mathrm{~mol} / \mathrm{L}$
d. $\quad 0.040 \mathrm{~mol} / \mathrm{L}$

Use the information below to answer \#8-10.

$$
\begin{array}{lll}
\text { Reaction 1: } & \mathrm{NOBr}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{Br}_{2}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=3.4 \times 10^{-2} \\
\text { Reaction 2: } & 2 \mathrm{NOCl}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=1.6 \times 10^{-5} \\
\text { Reaction 3: } & 2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=4.0 \times 10^{6} \\
\text { Reaction 4: } & \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{~g}) & \mathrm{K}_{\mathrm{c}}=4.2 \times 10^{2}
\end{array}
$$

8. For a reaction involving nitrogen monoxide inside a sealed flask, the value for the reaction quotient (Q) was found to be 1.1×10^{2} at a given point. If, after this point, the amount of NO gas in the flask increased, which reaction is most likely taking place in the flask?
a. reaction 1
b. reaction 2
c. reaction 3
d. reaction 4
9. Which of these reactions proceeds at the slowest rate?
a. reaction 1
b. reaction 2
c. reaction 3
d. cannot be determined
10. For reaction \#3, equimolar amounts of N_{2} gas and $\mathrm{H}_{2} \mathrm{O}$ gas are allowed to come to equilibrium in a sealed reaction vessel. Which of the following must be true at equilibrium?
I. $\left[\mathrm{N}_{2}\right]$ must be less than $\left[\mathrm{H}_{2} \mathrm{O}\right]$.
II. $\left[\mathrm{N}_{2}\right]$ must be greater than $\left[\mathrm{H}_{2} \mathrm{O}\right]$.
III. [NO] must be greater than $\left[\mathrm{H}_{2}\right]$.
a. I only
b. II only
c. I and III
d. II and III

Kitchen Sink Equilibria: Everything but the...

$\Delta \mathrm{G}$ and K: Oh rats!

$$
\Delta \mathrm{G}^{\circ}=-\mathrm{RT} \ln \mathrm{~K}
$$

$$
\begin{gathered}
\mathrm{R}=\text { universal gas constant }=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \\
\mathrm{~T}=\text { temperature in Kelvin } \\
\mathrm{K}=\text { equilibrium constant }
\end{gathered}
$$

This equation can be rewritten to give: $K=e^{-\Delta G^{\circ} / R T}$

And of course, don't forget the connection between electrochemistry and equilibrium!
ΔG and $E^{\circ}: I^{\prime} v e$ had enounf! $\quad \Delta G^{\circ}=-n F E^{\circ}$
$\mathrm{n}=$ number of moles of electrons
F = Faraday's constant $=96,485$ coulombs per mole of electrons

1. Calculate Gibb's free energy, in $\mathrm{kJ} / \mathrm{mol}_{\mathrm{rxn}}$, for the reaction of glucose and ATP to give glucose-6-phosphate and ADP, given that the equilibrium constant, K, is 5000 . at a temperature of $38^{\circ} \mathrm{C}$.
2. Assume that iron and magnesium half-cells are suitable connected at 298 K and standard conditions and that both aqueous solutions are 1.00 M concentrations.

$$
\begin{array}{ll}
\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{~s}) & \mathrm{E}^{\circ}=-0.45 \mathrm{~V} \\
\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{~s}) & \mathrm{E}^{\circ}=-2.37 \mathrm{~V}
\end{array}
$$

Calculate the cell potential, the free energy change (in $\mathrm{kJ} / \mathrm{mol}$), and the equilibrium constant for this voltaic cell.

Upping the Pressure

$P V=n R T$
$\mathrm{P}=$ pressure (in atm, torr, or mmHg)
$R=$ universal gas constant ($0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ or $62.36 \mathrm{~L}^{2}$ torr $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$)
$\mathrm{T}=$ temperature in Kelvin
The ideal gas law can be used to calculate the partial pressure of a gas at equilibrium if you know the equilibrium concentration of the gas.
3. If Consider the following reaction:

$$
2 \mathrm{COF}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=2.00 \text { at } 1000^{\circ} \mathrm{C}
$$

In an equilibrium mixture, the concentration of COF_{2} is 0.255 M and the concentration of CH_{4} is 0.118 M . What is the partial pressure of CO_{2} at equilibrium?

Equilibrium and Thermodynamic Favorability

4. For the gaseous equilibrium represented below, it is observed that greater amounts of PCl_{3} and Cl_{2} are produced as the temperature is increased.

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

a. What is the sign of $\Delta \mathrm{S}^{\circ}$ for the reaction? Justify.
b. What change, if any, will occur in $\Delta \mathrm{G}^{\circ}$ for the reaction as the temperature is increased? Explain your reasoning in terms of Le Chatelier's principle.

Multiple Choice Practice!

$$
\mathrm{Fe}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s})
$$

5. An electrolytic cell based on the reaction represented above was constructed from iron and copper half-cells. The observed voltage was found to be 0.59 volt instead of the standard cell potential, E°, of 0.78 volts. Which of the following could correctly account for this observation?
A. The copper electrode was larger than the iron electrode.
B. The solutions in the half-cells had different volumes.
C. The Cu^{2+} solution was more concentrated than the Fe^{2+} solution.
D. The Fe^{2+} solution was more concentrated than the Cu^{2+} solution.

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

6. When ice is placed into warm water at room temperature, which of the following is true for the phase change shown above?
a. $Q>K$
b. $\Delta \mathrm{G}$ is positive
c. $\Delta \mathrm{H}$ is negative
d. $\Delta \mathrm{S}$ is positive

$$
2 \mathrm{Al}(\mathrm{~s})+3 \mathrm{Mn}^{2+}(\mathrm{aq}) \rightarrow 2 \mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{Mn}(\mathrm{~s})
$$

7. A thermodynamically favorable cell, utilizing the reaction shown above, ran for 45 minutes. What happens to the measured voltage and why?
A. The measured voltage decreases over time because deviations in concentration that bring the cell closer to equilibrium will decrease the magnitude of the cell potential.
B. The measured voltage increases over time because deviations in concentration that bring the cell closer to equilibrium will increase the magnitude of the cell potential.
C. The measured voltage increases over time because $\left[\mathrm{Mn}^{2+}\right]$ increases as the cell runs.
D. The measured voltage remains constant because E° cell is an intensive property.
8. Which of the following statements is true about the reaction below?

$$
2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \mathrm{K}_{\mathrm{eq}}=2.7 \times 10^{-16}
$$

a. E^{0} and ΔG° are both positive.
b. E° and ΔG° are both negative.
c. E° is positive and ΔG° is negative.
d. E° is negative and ΔG° is positive.
9. Calculate the standard free energy of the following reaction at $25^{\circ} \mathrm{C}$.

$$
\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{Mg}(\mathrm{~s}) \rightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{Mg}^{2+}(\mathrm{aq}) \quad \mathrm{E}^{\circ} \text { cell }=1.92 \mathrm{~V}
$$

a. 3.7×10^{5}
b. 1.6×10^{3}
c. -3.7×10^{5}
d. -1.6×10^{3}
10. Which of the following would cause an increase in the potential of the voltaic cell described by the reaction below?

$$
2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{~s}) \rightarrow 2 \mathrm{Ag}(\mathrm{~s})+\mathrm{Fe}^{2+}(\mathrm{aq})
$$

a. Increasing $\left[\mathrm{Fe}^{2+}\right]$
c. Decreasing $\left[\mathrm{Fe}^{2+}\right]$
b. Adding more $\mathrm{Fe}(\mathrm{s})$
d. Removing some Fe(s)
11. The relationship between $\mathrm{K}_{\text {eq }}$ and temperature for an exothermic reaction is represented by
A.

B.

C.

D.

12. Consider the following equilibrium:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=4.0 \times 10^{-10}
$$

What is the value of K_{c} for $2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$?
a. 4.0×10^{10}
b. 2.0×10^{-5}
c. 2.0×10^{5}
d. 2.5×10^{9}

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NOCl}(\mathrm{~g}) \quad \Delta \mathrm{H}=-77 \mathrm{~kJ} / \mathrm{mol}_{\mathrm{rxn}}
$$

13. Which of the following statements accurately describes the above reaction?
a. The entropy of the products exceeds that of the reactants.
b. $\mathrm{NO}(\mathrm{g})$ will always be the limiting reagent.
c. K will be greater than 1 at all temperatures.
d. The temperature of the surroundings will increase as this reaction progresses.

Solubility Equilibria: Dissolve All Your Troubles Away!

Up until now, we've pretended that compounds fall into one of two categories: 100% soluble or 100% insoluble. Actually, an equilibrium can exist between a partially soluble substance and its solution.

Solubility Product Constant (

\qquad)

Equilibrium expression for dissolving a solid into ions
Like all K values, $K_{\text {sp }}$ is constant at a constant temperature.

$$
\mathrm{AgCl}(\mathrm{~s}) \rightleftarrows \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q)
$$

When the rate at which a solid dissolves into ions is \qquad to the rate at which ions precipitate back to solid, the system has reached equilibrium.

Let's Practice! Write the $K_{s p}$ expression for each of the following dissolutions:

Salt	Dissociation reaction	K_{sp} Expression
$\mathrm{K}_{2} \mathrm{CO}_{3}$		
$\mathrm{Al}_{2} \mathrm{~S}_{3}$		

Wait a sec, $\mathrm{K}_{\text {sp }}$ only has \qquad ! But why?

Reminder: There are three types of 100% soluble ions that you have to memorize:
Always soluble: \qquad metal cations, \qquad , \qquad

Small $\mathrm{K}_{\text {sp }}(\mathrm{K} \ll 1$)	Larger K ${ }_{\text {sp }}$	100\% Soluble
- Only a small amount of solid dissociates into ions - Lower solubility	- More solid dissociates into ions - Higher solubility	- All solid dissociates into ions - Dissolves to completion

$K_{\text {sp }}$ Calculations

ALWAYS write the balanced dissociation reaction and $\mathrm{K}_{\text {sp }}$ expression before solving!

Example: When silver sulfide dissolves in pure water, $\left[\mathrm{S}^{2-}\right]=3.4 \times 10^{-17} \mathrm{~mol} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$. Calculate its $K_{s p}$ value.

Now you try!

1. What is the $K_{s p}$ value of silver phosphate at $25^{\circ} \mathrm{C}$, if $\left[\mathrm{PO}_{4}{ }^{3-}\right]=1.8 \times 10^{-18} \mathrm{M}$ when dissolved in pure water?
2. What is the concentration of chloride ions that will form in a solution of PbCl_{2} in pure water? The $\mathrm{K}_{\text {sp }}$ of lead (II) chloride at $25^{\circ} \mathrm{C}$ is 1.17×10^{-5}.

But wait! The " \qquad " term for dissociation always refers to the amount of \qquad that will dissolve (since the stoichiometric coefficient of the salt will always be \qquad in the dissociation reaction. This term has a special name!

Solubility " S " (aka Molar Solubility) = "x" in your Ksp RICE Table
 How much of a
 \qquad will dissolve per
 \qquad L of solution (Units: $M=\mathrm{mol} / \mathrm{L}$)

Solubility is an equilibrium position and therefore \qquad change (for example, if you change the number of ions in solution, this will shift the equilibrium position and thus, the solubility).

- Larger molar solubility values suggest \qquad dissociation into ions and greater solubility.
- Smaller molar solubility values suggest \qquad dissociation into ions and lower solubility.

Important Note about molar solubility: When comparing solubility of given compounds, compare molar solubility values, \qquad $\mathrm{K}_{\text {sp }}$ values

- Exception: can directly compare molar solubility values if and only if the compounds compared dissociate into the \qquad number of ions

Now we can answer problems using the same math we used on the previous page. The terminology will be different, but the calculations are the same! Let's try some:
3. The molar solubility of barium fluoride is at $25^{\circ} \mathrm{C}$ is $2.45 \times 10^{-5} \mathrm{M}$. Calculate $\mathrm{K}_{\text {sp }}$.
4. Calculate the molar solubility of nickel (II) carbonate, which has a $K_{s p}$ of 1.4×10^{-7} at $25^{\circ} \mathrm{C}$.

You can use molar solubility to determine how many \qquad of a solid will dissolve in a quantity of water!
5. How many grams of iron (II) hydroxide can dissolve in 500 mL of water? Its $\mathrm{K}_{\mathrm{sp}}=4.87 \times 10^{-17}$ at $25^{\circ} \mathrm{C}$.
6. The molar solubility of PbCl_{2} in pure water is $1.43 \times 10^{-2} \mathrm{M}$ at $25^{\circ} \mathrm{C}$.
a. Write the equilibrium constant expression for the dissolving of $\mathrm{PbCl}_{2}(\mathrm{~s})$.
b. How many grams of PbCl_{2} can dissolve into 200. mL of pure water?
c. What change could be made to increase amount of PbCl_{2} that will dissolve?

Multiple Choice Practice!

7. The solubility product, $\mathrm{K}_{\text {sp }}$, of AgCl is 1.8×10^{-10}. Which of the following expressions is equal to the molar solubility of AgCl ?
a. $\left(1.8 \times 10^{-10}\right)^{2}$ molar
b. $\frac{1.8 \times 10^{-10}}{2}$ molar
c. 1.8×10^{-10} molar
d. $\sqrt{1.8 \times 10^{-10}}$ molar
8. Which of the following is equal to the solubility product, K_{sp}, of $\mathrm{Ag}_{2} \mathrm{CO}_{3}$?
a. $K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CO}_{3}^{2-}\right]$
b. $K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]^{2}$
c. $K_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right]$
d. $K_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right]^{2}$
9. If the solubility of BaF_{2} is equal to x, which of the following expressions is equal to the solubility product, $\mathrm{K}_{\text {sp }}$, of BaF_{2} ?
a. x^{2}
b. $2 x^{2}$
c. $2 x^{3}$
d. $4 x^{3}$
10. In a saturated solution of $\mathrm{Na}_{3} \mathrm{PO}_{4},\left[\mathrm{Na}^{+}\right]=0.30 \mathrm{M}$. What is the molar solubility of $\mathrm{Na}_{3} \mathrm{PO}_{4}$?
a. $\quad 0.10 \mathrm{M}$
b. $\quad 0.30 \mathrm{M}$
c. $\quad 0.60 \mathrm{M}$
d. $\quad 0.90 \mathrm{M}$
11. What is the maximum mass of AgCl can dissolve in 100 mL of pure water at $25^{\circ} \mathrm{C}$? The molar solubility of AgCl is 1.3×10^{-5}.
a. $\quad 1.9 \times 10^{-4} \mathrm{~g}$
b. $\quad 1.9 \times 10^{-5} \mathrm{~g}$
c. $\quad 9.1 \times 10^{-9} \mathrm{~g}$
d. $\quad 9.1 \times 10^{-6} \mathrm{~g}$

Solubility Lab

Although all compounds have a characteristic solubility in water at a given temperature, some families of compounds are more soluble than others and it is useful to understand the general rules of solubility. If the solubility of a substance is greater than $0.1 \mathrm{~mol} / \mathrm{L}$, we call the substance soluble. If the solubility is less than $0.01 \mathrm{~mol} / \mathrm{L}$, we call the substance insoluble, and if the solubility is between $0.01 \mathrm{~mol} / \mathrm{L}$ and $0.1 \mathrm{~mol} / \mathrm{L}$, we call the substance slightly soluble or sparingly soluble. Solubility equilibrium is typically studied in saturated solutions of slightly soluble compounds.

Part 1: Precipitation of Slightly Soluble Compounds

Reaction \#1:

1. Place one drop of 0.10 M lead (II) nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, in a clean well.
2. Add one drop of 0.10 M sodium bromide, NaBr , to the same well. Mix well by tapping/ flicking the well plate.

Observations:

Complete reaction:

Net-ionic reaction:

Spectator ions:

Reaction \#2:

1. Place one drop of 0.10 M lead (II) nitrate, $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$, in a clean well.
2. Add one drop of 0.10 M sodium iodide, NaI , to the same well. Mix well by tapping/ flicking the well plate.

Observations:
Complete reaction:
Net-ionic reaction:
Spectator lons:

Part 2: Relative Solubility

Challenge: Determine which of the two lead-containing precipitates formed in Part 1 is least soluble.
Materials: a clean well plate, $0.10 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution, 0.10 M NaBr solution, and 0.10 M NaI solution.
Experimental Design: In the space below,

1. Briefly outline the experimental procedure you will follow (include all equipment and solutions).
2. Explain how the data collected will allow you to determine which of the two lead precipitates is least soluble.
3. Check the answers to \#1 and \#2 with your teacher. Once they sign off, you may start your experiment!

Observations/Data:

Results: Which precipitate is least soluble? Explain how your data supports your conclusion.

Part 3: Relative Solubility with Numbers

Use the information provided in the table below to answer the following questions.

	K $_{\text {sp }}$	Molar solubility (mol/L)
PbBr_{2}	6.6×10^{-6}	
PbI_{2}		1.3×10^{-3}

1. Complete the table above by filling in the missing values. Show all math in the space below.
2. Using the values in the completed table, determine which of the two precipitates is least soluble. Explain.
3. Does your answer to \#2 support the results of your experiment in Part 2? Explain.

Part 4: One-pot Solubility

Consider the information in the table below when answering the following questions.

	Precipitate color	$K_{\text {sp }}$
$\mathbf{A g C l}$	milky white	1.8×10^{-10}
$\mathbf{A g}_{2} \mathbf{C O}_{3}$	white with yellow tint	8.1×10^{-12}

1. The following ions are all present in solution at the same time: $\mathrm{Ag}^{+}(\mathrm{aq}), \mathrm{Cl}^{-}(\mathrm{aq})$, and $\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$. Using the information provided in the table above and your knowledge and solubility equilibria, predict which of the two precipitates above will form under these conditions. Justify your prediction.
2. Design an experiment to test the prediction you made in question \#1. Your available materials are one well plate, $0.10 \mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq}), 0.10 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$, and $0.10 \mathrm{M} \mathrm{NaCl}(\mathrm{aq})$. Record your observations/data below.

Observations/Data:

Results: Which precipitate formed when ions of $\mathrm{Ag}^{+}, \mathrm{Cl}^{-}$, and $\mathrm{CO}_{3}{ }^{2-}$ were present? Explain. Did your data support your prediction in question \#1?

Clean-Up: Empty the solutions into the designated waste heavy metals container. Wash the well plates thoroughly with soap and water, rinse with tap water, then with distilled water. Clean up all other materials and wash your hands with soap and water.

The Common Ion Effect

Reminder: solubility can change if you change reaction conditions!

- Le Châtelier's principle predicts that a salt will become \qquad soluble in a solution that already contains one of its own ions already dissolved: what's known as a \qquad ion.
- The presence of a common ion acts like increasing the concentration of a \qquad ion in the salt dissolution, causing the system to shift \qquad to establish equilibrium (towards the \qquad side).

Example:

1. Circle any of the following compounds that contain a common ion to MgCl_{2} :
AgF_{2}
NaCl
$\mathrm{Mg}(\mathrm{OH})_{2}$
AlCl_{3}
$\mathrm{Al}_{2} \mathrm{~S}_{3}$
2. Which of the compounds above, if present in the solution in equal concentration, would reduce the solubility of MgCl_{2} :
a. the most? Why?
b. the least? Why?

The Effect of pH on Solubility

The common ion effect predicts that when a salt contains ions that can act as an acid or a base, the solubility of that salt will be affected by changes in \qquad .

Example:

$$
\mathrm{Fe}(\mathrm{OH})_{3} \rightleftharpoons \mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq})
$$

3. Will iron (III) hydroxide be more, less, or equally soluble in a basic solution (when compared to its solubility in pure water)? Explain.
4. Will iron (III) hydroxide be more, less, or equally soluble in an acidic solution (when compared to its solubility in pure water)? Explain.

Common Ion Calculations

5. Calculate the molar solubility of nickel (II) carbonate in a solution containing $0.100 \mathrm{M} \mathrm{NaCO}_{3}$. The $K_{s p}$ of NiCO_{3} is 1.4×10^{-7} at $25^{\circ} \mathrm{C}$.
6. Calculate the molar solubility of SrF_{2} in a solution containing 0.400 M NaF . The $K_{s p}$ of SrF_{2} is 7.9×10^{-10} at $25^{\circ} \mathrm{C}$.

Common Ion Applications: Achieving a Desired Concentration

You can use the common ion effect to control the \qquad of the non-common ion in solution! Let's see how this chemical magic works.
7. In pure water at $25^{\circ} \mathrm{C}$, the K_{sp} of CaCO_{3} is $3.8 \times 10^{-9} . \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ is added to 1.00 L of a saturated solution of CaCO_{3} at $25^{\circ} \mathrm{C}$ until the $\left[\mathrm{CO}_{3}{ }^{2-}\right]$ is reduced to $2.3 \times 10^{-7} \mathrm{M}$. How many moles of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ are dissolved in solution at the point when $\left[\mathrm{CO}_{3}^{2-}\right]=2.3 \times 10^{-7} \mathrm{M}$? (Assume the added $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ has a negligible effect on the total volume of solution.)
8. Given a 2.00 L saturated solution of $\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}, \mathrm{~K}_{\mathrm{sp}}=1.4 \times 10^{-7}$, how many moles of NaIO_{3} would need to be dissolved in solution to reduce $\left[\mathrm{Cu}^{2+}\right]$ to $6.0 \times 10^{-5} \mathrm{M}$? (Assume the added NaIO_{3} does not appreciably change the total volume of solution.)

Even more practice!

9. Copper (I) bromide has a measured solubility of $2.0 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$. Calculate its $K_{s p}$ value.
10. The $K_{s p}$ value for copper(II) iodate, $\mathrm{Cu}\left(\mathrm{IO}_{3 \mid 2}\right.$, is 1.4×10^{-7} at $25^{\circ} \mathrm{C}$. What is the maximum mass, in grams, of copper (II) iodate that can dissolve in $500 . \mathrm{mL}$ of water?
11. In pure water at $25^{\circ} \mathrm{C}$, the molar solubility of PbCl_{2} is 1.3×10^{-6} and the $\mathrm{K}_{\text {sp }}$ is 1.6×10^{-5}. LiCl is added to 5.00 L of a saturated solution of PbCl_{2} at $25^{\circ} \mathrm{C}$ until the $\left[\mathrm{Pb}^{2+}\right]$ is reduced to $4.5 \times 10^{-4} \mathrm{M}$. How many moles of chloride ions are dissolved in solution at the point when $\left[\mathrm{Pb}^{2+}\right]=4.5 \times 10^{-4} \mathrm{M}$? (Assume the added LiCl has a negligible effect on the total volume of solution.)

150 mL of saturated SrF_{2} solution is present in a 250 mL beaker at room temperature. The molar solubility of SrF_{2} at 298 K is $1.0 \times 10^{-3} \mathrm{M}$.
12. What are the concentrations of Sr^{2+} and F^{-}in the beaker?
a. $\left[\mathrm{Sr}^{2+}\right]=1.0 \times 10^{-3} \mathrm{M} ;\left[\mathrm{F}^{-}\right]=1.0 \times 10^{-3} \mathrm{M}$
b. $\left[\mathrm{Sr}^{2+}\right]=1.0 \times 10^{-3} \mathrm{M} ;\left[\mathrm{F}^{-}\right]=2.0 \times 10^{-3} \mathrm{M}$
c. $\left[\mathrm{Sr}^{2+}\right]=2.0 \times 10^{-3} \mathrm{M} ;\left[\mathrm{F}^{-}\right]=1.0 \times 10^{-3} \mathrm{M}$
d. $\left[\mathrm{Sr}^{2+}\right]=2.0 \times 10^{-3} \mathrm{M} ;\left[\mathrm{F}^{-}\right]=2.0 \times 10^{-3} \mathrm{M}$
13. What would be the effect on $\left[\mathrm{Sr}^{2+}\right]$ if some $\mathrm{NaF}(\mathrm{s})$ was added to the beaker?
a. $\left[\mathrm{Sr}^{2+}\right]$ would remain unchanged; neither ion in $\mathrm{NaF}(\mathrm{s})$ is common to Sr^{2+}
b. $\quad\left[\mathrm{Sr}^{2+}\right]$ would increase; more Sr^{2+} ions would be needed to balance the additional F^{-}ions to re-establish equilibrium.
c. $\left[\mathrm{Sr}^{2+}\right]$ would decrease; the additional fluoride ions would cause the system to shift left to re-establish equilibrium.
d. $\left[\mathrm{Sr}^{2+}\right]$ would decrease; the additional Na^{+}would cause an excess of positive charge, and the system would shift left to reduce overall positive charge.
14. Calculate the solubility product for SrF_{2} at $25^{\circ} \mathrm{C}$.
a. 2×10^{-9}
b. 2×10^{-6}
c. 4×10^{-9}
d. 4×10^{-6}

Will a Precipitate Form? A Task for K vs Q!

Precipitation occurs when the concentrations of ions is \qquad than the solubility of the ionic compound.

Compare the value of Q with given K_{sp} to determine if a precipitate will form!

$\mathbf{K}>\mathbf{Q}$	$\mathbf{K}=\mathbf{Q}$	$\mathbf{K}<\mathbf{Q}$
Unsaturated Solution	Saturated Solution	Saturated Solution with extra
System will shift right to reach equilibrium $\mathrm{AgCl}(\mathrm{~s}) \rightleftarrows \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q)$	At equilibrium $\mathrm{AgCl}(\mathrm{~s}) \rightleftarrows \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q)$	System will shift left to reach equilibrium $\mathrm{AgCl}(\mathrm{~s}) \rightleftarrows \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q)$
More solid will dissolve until $\mathrm{K}=\mathrm{Q}$.	Solid will both dissolve and precipitate at the same rate.	More solid will precipitate until $\mathrm{K}=\mathrm{Q}$.
no precipitate		yes precipitate

Important Ideas to Note:

1. If \qquad solid is present, the solution is at equilibrium (a \qquad solution)
2. Ion concentration, [ions], is independent of volume when at equilibrium (for instance, in a \qquad solution).
3. If ions are present that could form \qquad salts, the solid with the \qquad molar solubility will form.

Solubility Equilibrium Translation Guide

1. Solubility product constant $=\mathrm{K}_{\mathrm{sp}}$ (aka the equilibrium constant for solubility)
2. Molar solubility $=x$ from RICE table (aka how many moles of a solid will dissolve in 1.0 L, units $=M=\mathrm{mol} / \mathrm{L}$)
3. Saturated $=$ equilibrium (aka a solution has dissolved as many ions as can fit, any extra will precipitate)

Let's Practice!

1. A chemist makes a 2.0 L saturated solution of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ solution, which has a $K_{s p}=6.0 \times 10^{-39}$.
a. What is the concentration of Ba^{2+} ions in solution?
b. After two days of sitting on the counter, some liquid has evaporated from the solution. Did $\left[\mathrm{Ba}^{2+}\right]$ increase, decrease, or remain the same? Justify your answer.
c. The chemist adds 3.00 g of solid $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$ to the original saturated solution of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$. Did $\left[\mathrm{Ba}^{2+}\right]$ increase, decrease, or remain the same? Justify your answer.
2. A solution containing lead (II) nitrate is mixed with one containing sodium bromide to form a solution that is 0.0150 M in $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{3}$ and 0.00350 M NaBr . Does a precipitate form in this newly mixed solution? $\left(K_{\text {sp }}\right.$ of PbBr_{2} $=4.67 \times 10^{-6}$)
3. The $K_{s p}$ value for lead (II) bromide, PbBr_{2}, is 4.6×10^{-6} at $25^{\circ} \mathrm{C}$. What is the maximum mass, in grams, of PbBr_{2} that can dissolve in 1.50 L of water?
4. A student mixes 15.0 mL of 0.015 M sodium iodide solution, NaI , with 5.00 mL of $0.0025 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$. The $\mathrm{K}_{\text {sp }}$ of $\mathrm{Pbl} \mathrm{I}_{2}$ is $8.5 \times 10^{-9} \mathrm{M}$. What will the student observe? Justify your answer with calculations.
5. Sodium carbonate is added to a 0.0024 M solution of the nickel (II) ion. If $\left[\mathrm{Na}_{2} \mathrm{CO}_{3}\right]=1.0 \times 10^{-4} \mathrm{M}$, will a precipitate form? (The $\mathrm{K}_{\text {sp }}$ of nickel (II) carbonate is 6.6×10^{-9}.)
6. Calculate the molar solubility of $\mathrm{Ba}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, which has a $K_{\text {sp }}=6.0 \times 10^{-39}$.

Multiple Choice Practice!

7. 150 mL of saturated SrF_{2} solution is present in a 250 mL beaker at room temperature. If some of the solution evaporates overnight, which of the following will occur?
a. The mass of the solid and the concentration of the ions will remain the same.
b. The mass of the solid and the concentration of the ions will increase.
c. The mass of the solid will decrease, and the concentration of the ions will remain the same.
d. The mass of the solid will increase, and the concentration of the ions will remain the same.
8. A student added 1 liter of a 1.0 M KCl solution to 1 liter of a $1.0 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{3}$ solution. A lead chloride precipitate formed, and nearly all of the lead ions disappeared from solution. Which of the following lists the ions remaining in the solution in order of decreasing concentration?
a. $\left[\mathrm{NO}_{3}{ }^{-}\right]>\left[\mathrm{K}^{+}\right]>\left[\mathrm{Pb}^{2+}\right]$
b. $\left[\mathrm{NO}_{3}^{-}\right]>\left[\mathrm{Pb}^{2+}\right]>\left[\mathrm{K}^{+}\right]$
c. $\left[\mathrm{K}^{+}\right]>\left[\mathrm{Pb}^{2+}\right]>\left[\mathrm{NO}_{3}^{-}\right]$
d. $\left[\mathrm{K}^{+}\right]>\left[\mathrm{NO}_{3}^{-}\right]>\left[\mathrm{Pb}^{2+}\right]$

Use the following information to answer questions 8-10.
Silver sulfate, $\mathrm{Ag}_{2} \mathrm{SO}_{4}$, has a solubility product constant of 1.0×10^{-5}. The diagram to the right shows the products of a precipitation reaction in which some silver sulfate was formed.
9. What is the identity of the excess reactant?
a. AgNO_{3}
b. $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
c. NaNO_{3}
d. $\quad \mathrm{Na}_{2} \mathrm{SO}_{4}$

10. If the beaker above was left uncovered for several hours:
I. Some of the $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ would dissolve.
II. Additional $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ would precipitate.
III. $\left[\mathrm{Ag}^{+}\right]$would remain constant.
a. I only
b. II only
c. II and III
d. I and III
11. Which ion concentration below would have led the precipitate to form?
a. $\left[\mathrm{Ag}^{+}\right]=0.01 \mathrm{M},\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.01 \mathrm{M}$
b. $\left[\mathrm{Ag}^{+}\right]=0.10 \mathrm{M},\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.01 \mathrm{M}$
c. $\left[\mathrm{Ag}^{+}\right]=0.01 \mathrm{M},\left[\mathrm{SO}_{4}{ }^{2-}\right]=0.10 \mathrm{M}$
d. It is impossible to determine without knowing the total volume of the solution.

Solubility Summary Sheet

Solubility Language	Normal Equilibrium Language
solubility product constant $\left(\mathrm{K}_{\text {sp }}\right)$	equilibrium constant (K)
molar solubility	x (from RICE table)
saturated solution	system at equilibrium

When you need to solve for molar solubility

Given?	Asked to find?	Strategy
$\mathrm{K}_{\text {sp }}$	molar solubility	1. Write $\mathrm{K}_{\text {sp }}$ expression using ions produced when solid dissolves. 2. Substitute x values from mini-RICE table 3. Solve for X
1. $\mathrm{K}_{\mathrm{sp}} \quad \mathrm{OR}$ 2. Concentration of all ions in a saturated solution	\# of grams that can dissolve	1. Write K_{sp} expression using ions produced when solid dissolves. 2. Substitute x values from mini-RICE table 3. Solve for $x($ in $M=m o l / L)$ 4. Use the volume of solution to calculate moles that can dissolve 5. Use molar mass to convert to grams

When you don't need to solve for molar solubility

Given?	Asked to find?	Use:
Concentration of all ions in a saturated solution	$\mathrm{K}_{\text {sp }}$	1. Write $K_{s p}$ expression using ions produced when solid dissolves. 2. Substitute given concentrations and solve for $\mathrm{K}_{\text {sp }}$.
other ion concentrations at equilibrium and K_{sp}	Concentration of ONE ion in a saturated solution	1. Write K_{sp} expression using ions produced when solid dissolves. 2. Plug in known values, solve for unknown concentration.
ion concentrations when solutions are added or mixed and $K_{\text {sp }}$	If a precipitate will form	1. Write $\mathrm{Q}_{\text {sp }}$ expression using ions produced when solid dissolves. 2. Substitute given concentrations and solve for $\mathrm{Q}_{\text {sp }}$. 3. Compare K and Q : - $K>Q=$ no precipitate - $\mathrm{K}<\mathrm{Q}=$ yes precipitate

1.

$$
2 \mathrm{~A}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g}) \quad K=1.6 \times 10^{4}
$$

Two moles of Gas A are placed into a closed system where the temperature is held constant at 270 K and allowed to reach equilibrium as represented by the chemical reaction shown above. After 15 minutes at equilibrium, additional Gas B is injected into the reaction vessel. Which of the following best describes the behavior of the equilibrium mixture in response to the addition of Gas B?

A The concentration of Gas A increases.
B The concentration of Gas C increases.
C The value of the equilibrium constant increases.
D There is no observable effect since the equilibrium was already established.
2. In which of the following systems would the number of moles of the substances present at equilibrium NOT be shifted by a change in the volume of the system at constant temperature?

A $\mathrm{CO}(\mathrm{g})+\mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})$
B $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
C $\quad \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
D $\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
3.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HCl}(\mathrm{~g})
$$

The chemical equation for the formation of hydrogen chloride gas from its elements is shown above. Given that the equilibrium constant for the reaction above is $K_{p,}$, Which of the following best represents the equilibrium constant for the reaction

$$
\mathrm{HCl}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) ?
$$

A $\frac{1}{\mathrm{~K}_{\mathrm{p}}^{2}}$
C $\frac{1}{\sqrt{K_{p}}}$
B $\mathrm{K}_{\mathrm{p}}^{2}$
D $\sqrt{\mathrm{K}_{\mathrm{p}}}$
4.

$$
\mathrm{CaCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons \mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
$$

Solid calcium chloride reacts with water as shown above. Which of the following is the correct equilibrium expression for this reaction?
A $K=\frac{\left[\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CaCh}_{2}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
C $K=\frac{1}{2\left[\mathrm{H}_{2} \mathrm{O}\right]}$
B $K=\frac{1}{\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}}$
D $K=\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}$
5. A gaseous reaction occurs and comes to equilibrium, as shown below. Which of the following changes to the system will serve to increase the number of moles of I_{2} present at equilibrium?

$$
2 \mathrm{HI}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HCl}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})+\text { energy }
$$

a. Increasing the volume at constant temperature
b. Decreasing the volume at constant temperature
c. Increasing the temperature at constant volume
d. Decreasing the temperature at constant volume

$$
\begin{array}{ll}
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & K_{c}=1.4 \\
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) & K_{c}=14.5
\end{array}
$$

6. Given the above information, what would be the equilibrium constant for the reaction below?

$$
3 \mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

(A) $(2)(1.4)(14.5)$
(C) $\frac{14.5}{(1.4)^{2}}$
(B) $\frac{(1.4)(14.5)}{2}$
(D) $14.5-1.4^{2}$
7. In which of the following ways could the reaction below be manipulated to create more product?

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{5}(\mathrm{~g}) \quad \Delta \mathrm{H}=-92.5 \mathrm{~kJ} / \mathrm{mol}_{\mathrm{rxn}}
$$

a. Decreasing the concentration of PCl_{3}
b. Increasing the pressure
c. Increasing the temperature
d. None of the above
8. A sample of $\mathrm{H}_{2} \mathrm{~S}$ gas is placed in an evacuated, sealed container and heated until the following decomposition reaction occurs at $1000 \mathrm{~K}: \quad 2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=1.0 \times 10^{-6}$

Which option best describes what will immediately occur to the reaction rates if the pressure on the system is increased after it has reached equilibrium?
a. The rate of both the forward and the reverse reactions will increase.
b. The rate of the forward reaction will increase will the rate of the reverse reaction will decrease.
c. The rate of the forward reaction will decrease will the rate of the reverse reaction will increase.
d. Neither the rate of the forward nor reverse reactions will change.

$$
\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{IBr}(\mathrm{~g})
$$

9. At $150^{\circ} \mathrm{C}$, the equilibrium constant, K_{p}, for the reaction shown above has a value of 300 . The reaction was allowed to reach equilibrium in a sealed container and the partial pressure due to $\operatorname{IBr}(\mathrm{g})$ was found to be 3 atm. Which of the following could be the partial pressures due to $\mathrm{Br}_{2}(\mathrm{~g})$ and $\mathrm{I}_{2}(\mathrm{~g})$ in the container?

$\mathrm{Br}_{2}(\mathrm{~g}) \quad \mathrm{I}_{2}(\mathrm{~g})$

a. $0.1 \mathrm{~atm} \quad 0.3 \mathrm{~atm}$
b. $0.3 \mathrm{~atm} \quad 1 \mathrm{~atm}$
c. $1 \mathrm{~atm} \quad 1 \mathrm{~atm}$
d. 1 atm 3 atm
10. Consider the following equilibrium: $\quad \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g}) \quad \mathrm{K}_{\text {eq }}=50.0$

What is the value $\mathrm{K}_{\text {eq }}$ for the reaction rewritten as: $\quad 2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\text {eq }}=$?
a. -50.0
b. 0.0200
c. 25.0
d. 50.0
11. Consider the following equilibrium: $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$

An equilibrium mixture contains $4.0 \times 10^{-2} \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$ and $1.5 \times 10^{-2} \mathrm{~mol} \mathrm{NO}_{2}$ in a 1.0 L flask. What is the value of $\mathrm{K}_{\text {eq }}$?
a. 5.6×10^{-3}
b. 3.8×10^{-1}
c. 7.5×10^{-1}
d. 1.8×10^{2}
12. Consider the following equilibrium: $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NOCl}(\mathrm{g}) \quad \mathrm{K}_{\text {eq }}=5.0$ At equilibrium, $\left[\mathrm{Cl}_{2}\right]=1.0 \mathrm{M}$ and $[\mathrm{NO}]=2.0 \mathrm{M}$. What is the $[\mathrm{NOCl}]$ at equilibrium?
a. $\quad 0.12 \mathrm{M}$
b. $\quad 0.89 \mathrm{M}$
c. $\quad 4.5 \mathrm{M}$
d. $\quad 10 . \mathrm{M}$

1. A sample of solid $\mathrm{U}_{3} \mathrm{O}_{8}$ is placed in a rigid 1.500 L flask. Chlorine gas, $\mathrm{Cl}_{2}(\mathrm{~g})$, is added, and the flask is heated to $862^{\circ} \mathrm{C}$. The equation for the reaction that takes place and the equilibrium constant expression for the reaction are given below.

$$
\mathrm{U}_{3} \mathrm{O}_{8}(s)+3 \mathrm{Cl}_{2}(g) \leftrightarrow 3 \mathrm{UO}_{2} \mathrm{Cl}_{2}(g)+\mathrm{O}_{2}(g)
$$

When the system is at equilibrium, the partial pressure of $\mathrm{Cl}_{2}(\mathrm{~g})$ is 1.007 atm , the partial pressure of $\mathrm{UO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})$ is $9.734 \times 10^{-4} \mathrm{~atm}$, and the partial pressure of $\mathrm{O}_{2}(\mathrm{~g})$ is $3.245 \times 10^{-4} \mathrm{~atm}$.
a. Write the equilibrium constant expression, K_{p}, for this reaction and calculate the value of K_{p} for the system at $862^{\circ} \mathrm{C}$. [2 points]
b. Calculate the concentration of $\mathrm{Cl}_{2}(\mathrm{~g})$ at equilibrium. [1 point]
c. Calculate the Gibb's free-energy change, $\Delta \mathrm{G}^{\circ}$, for the reaction at $862^{\circ} \mathrm{C}$. [1 point]
d. After a certain period of time, 1.000 mole of $\mathrm{O}_{2}(\mathrm{~g})$ is added to the mixture in the flask. Does the mass of $\mathrm{U}_{3} \mathrm{O}_{8}(\mathrm{~s})$ in the flask increase, decrease, or remain the same? Justify your answer. [2 point]
2. Several reactions are carried out using AgBr , a cream-colored silver salt for which the value of the solubilityproduct constant, $\mathrm{K}_{\text {sp }}$, is 5.0×10^{-13} at 298 K .
a. Write the expression for the solubility-product constant, K_{sp}, of AgBr . [1 point]
b. Calculate the value of $\left[\mathrm{Ag}^{+}\right]$in 50.0 mL of a saturated solution of AgBr at 298 K . [1 point]
c. A 50.0 mL sample of distilled water is added to the solution described in part (b), which is in a beaker with some solid AgBr at the bottom. The solution is stirred and equilibrium is reestablished. Some solid AgBr remains in the beaker. Is the value of $\left[\mathrm{Ag}^{+}\right]$greater than, less than, or equal to the value you calculated in part (b) ? Justify your answer. [1 point]
d. Calculate the minimum volume of distilled water, in liters, necessary to completely dissolve a 5.0 g sample of $\mathrm{AgBr}(s)$ at 298 K . (The molar mass of AgBr is $188 \mathrm{~g} \mathrm{~mol}^{-1}$.) [2 points]
e. A student mixes 10.0 mL of $1.5 \times 10^{-4} \mathrm{M} \mathrm{AgNO}_{3}$ with 2.0 mL of $5.0 \times 10^{-4} \mathrm{M} \mathrm{NaBr}$ and stirs the resulting mixture. What will the student observe? Justify your answer with calculations. [3 points]
f. The color of another salt of silver, $\operatorname{Agl}(s)$, is yellow. A student adds a solution of Nal to a test tube containing a small amount of solid, cream-colored AgBr . After stirring the contents of the test tube, the student observes that the solid in the test tube changes color from cream to yellow.
i. Write the chemical equation for the reaction that occurred in the test tube. [1 point]
ii. Which salt has the greater value of K_{sp} : AgBr or Agl ? Justify your answer. [1 point]
3. Answer the following questions about the solubility and reactions of the ionic compounds $\mathrm{M}(\mathrm{OH})_{2}$ and MCO_{3}, where M represents an unidentified metal.
a. Identify the charge of the M ion in the ionic compounds above. [1 point] \qquad
b. At $25^{\circ} \mathrm{C}$, in a saturated solution of $\mathrm{M}(\mathrm{OH})_{2},\left[\mathrm{OH}^{-}\right]=1.4 \times 10^{-5} \mathrm{M}$.
i. Write the solubility-product constant expression for $\mathrm{M}(\mathrm{OH})$ 2. [1 point]
ii. Calculate the value of the solubility-product constant, $K s p$, for $\mathrm{M}(\mathrm{OH})_{2}$ at $25^{\circ} \mathrm{C}$. [2 points]
c. For the metal carbonate, MCO_{3}, the value of the solubility-product constant, $K_{s p}$, is 7.4×10^{-14} at $25^{\circ} \mathrm{C}$. On the basis of this information and your results in part (b), which compound, $\mathrm{M}(\mathrm{OH})_{2}$ or MCO 3 , has the greater molar solubility in water at $25^{\circ} \mathrm{C}$? Justify your answer with a calculation. [2 points]
d. MCO_{3} decomposes at high temperatures, as shown by the reaction represented below.

$$
\mathrm{MCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{MO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})
$$

A sample of MCO_{3} is placed in a previously evacuated container, heated to 423 K , and allowed to come to equilibrium. Some solid MCO 3 remains in the container. The value of K_{p} for the reaction at 423 K is 0.0012 .
i. Write the equilibrium-constant expression for K_{p} of the reaction. [1 point]
ii. Determine the pressure, in atm, of $\mathrm{CO}_{2}(g)$ in the container at equilibrium at 423 K . [1 point]
iii. Indicate whether the value of ΔG° for the reaction at 423 K is positive, negative, or zero. Justify your answer.
4. When 3.29 moles of nitrogen gas, N_{2}, and 2.95 moles of hydrogen gas, H_{2}, are placed in a 5.00 L evacuated container at 773 K , ammonia gas, NH_{3}, is formed according to this equation: $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \leftrightarrow 2 \mathrm{NH}_{3}(g)$ When equilibrium is established, 0.565 mole of $\mathrm{NH}_{3}(\mathrm{~g})$ is present in the flask.
a. Write the expression for the equilibrium constant, K_{c}, for this reaction. [1 point]
b. Calculate the equilibrium concentrations, in $\mathrm{mol} \mathrm{L}^{-1}$, of the following gases in the container at 773 K .
i. $\quad N_{2}(\mathrm{~g})$ [1 point]
ii. $H_{2}(\mathrm{~g})$ [1 point]
c. Calculate the value of the equilibrium constant, K_{c}, at 773 K . [1 point]
d. When the same reaction is carried out at 298 K , the number of moles of NH_{3} present at equilibrium is much larger than 0.565 mole. Is the forward reaction endothermic or exothermic? Justify your answer. [1 point]
e. Calculate the value of the equilibrium constant, K_{c}, for the reaction below. [1 points]

$$
6 \mathrm{NH}_{3}(g) \leftrightarrow 3 \mathrm{~N}_{2}(g)+9 \mathrm{H}_{2}(g)
$$

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) \quad \Delta H=-92.4 \mathrm{~kJ} / \mathrm{mol}_{r x n}
$$

1. When the reaction above took place at a temperature of 570 K in a reaction vessel of 0.75 L , the following values were measured after the system reached equilibrium: $\mathrm{NH}_{3}=0.150 \mathrm{~mol}, \mathrm{~N}_{2}=0.375 \mathrm{~mol}$, and $\mathrm{H}_{2}=0.150 \mathrm{~mol}$.
a. Write the expression for the equilibrium constant, K_{c}, and calculate its value. [2 points]
b. Calculate ΔG for this reaction. [1 point]
c. Describe how the concentration of $\mathrm{H}_{2}(\mathrm{~g})$ at equilibrium will be affected by each of the following changes to the system at equilibrium.
i. The temperature is increased. [1 point]
ii. The volume of the reaction chamber is increased. [1 point]
iii. $\quad N_{2}$ gas is added to the reaction chamber. [1 point]
iv. Helium gas is added to the reaction chamber. [1 point]
2. Answer the following questions about the solubility of some fluoride salts of alkaline earth metals.
a. A student prepares $100 . \mathrm{mL}$ of a saturated solution of MgF_{2} by adding 0.50 g of solid MgF_{2} to 100 . mL of distilled water at $25^{\circ} \mathrm{C}$ and stirring until no more solid dissolves. (Assume that the volume of the undissolved MgF_{2} is negligibly small.) The saturated solution is analyzed, and it is determined that [F^{-}] in the solution is $2.4 \times 10^{-3} \mathrm{M}$.
i. Write the chemical equation for the dissolving of solid MgF_{2} in water. [1 point]
ii. Calculate the number of moles of MgF_{2} that dissolved. [2 points]
iii. Determine the value of the solubility-product constant, $K_{s p}$, for MgF_{2} at $25^{\circ} \mathrm{C}$. [1 point]
3. Answer the following questions about the solubility of $\mathrm{Ca}(\mathrm{OH})_{2}\left(\mathrm{~K}_{\mathrm{sp}}=1.3 \times 10^{-6}\right)$. (2015)
b. Write a balanced chemical equation for the dissolution of $\mathrm{Ca}(\mathrm{OH})_{2}$ in pure water. [1 point]
c. Calculate the molar solubility of $\mathrm{Ca}(\mathrm{OH})_{2}$ in $0.10 \mathrm{M} \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$. [2 points]
d. In the box below, complete a particle representation diagram that includes four water molecules with proper orientation around the Ca^{2+} ion. [1 point]
Represent water molecules as

Polyatomic Ions

$1^{\text {st }}$ six-weeks

$\mathrm{NO}_{3}{ }^{-}$	nitrate	$\mathrm{ClO}_{3}{ }^{-}$chlorate	$\mathrm{PO}_{3}{ }^{3-}$ phosphite
$\mathrm{NO}_{2}{ }^{-}$	nitrite	$\mathrm{ClO}_{2}{ }^{-}$chlorite	$\mathrm{BrO}_{3}{ }^{-}$bromate
$\mathrm{CO}_{3}{ }^{2-}$	carbonate	$\mathrm{SO}_{4}{ }^{2-}$ sulfate	$\mathrm{BrO}_{2}{ }^{-}$bromite
$\mathrm{IO}_{3}{ }^{-}$	iodate	$\mathrm{SO}_{3}{ }^{2-}$ sulfite	Consonants = \# of Oxygen
$\mathrm{IO}_{2}{ }^{-}$	iodite	$\mathrm{PO}_{4}{ }^{3-}$ phosphate	Vowels $=$ Charge

$2^{\text {nd }}$ six-weeks

ClO_{4}^{-}	perchlorate	IO^{-}	hypoiodite
ClO^{-}	hypochlorite	BrO_{4}^{-}	perbromate
IO_{4}^{-}	periodate	BrO^{-}	hypobromite

	Difference in Oxygen from ATE
Per____ate	+1
Ate	0
Ite	-1
Hypo___ite	-2

$3^{\text {rd }}$ six-weeks

$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	dihydrogen phosphate	HCO_{3}^{-}	hydrogen carbonate or bicarbonate
$\mathrm{HPO}_{4}{ }^{2-}$	hydrogen phosphate	HSO_{4}^{-}	hydrogen sulfate

$4^{\text {th }}$ six-weeks

$\mathrm{NH}_{4}{ }^{+}$	ammonium	OH^{-}
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$or $\mathrm{CH}_{3} \mathrm{COO}^{-}$	acetate	$\mathrm{H}_{3} \mathrm{O}^{+}$

$5^{\text {th }}$ six-weeks

$\mathrm{MnO}_{4}-$	permanganate	$\mathrm{CrO}_{4}{ }^{2-}$	chromate
CN^{-}	cyanide	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$	dichromate

$6^{\text {th }}$ six-weeks

$\mathrm{O}_{2}{ }^{2-}$	peroxide	$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-}$	tartrate
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	thiosulfate	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$	oxalate

Acid Nomenclature	
Binary	Hydro_____ ic
ate	ic
ite	ous

Polyatomic Ions

Br -Based Ions

BrO^{-}hypobromite
$\mathrm{BrO}_{2}{ }^{-} \quad$ bromite
$\mathrm{BrO}_{3}{ }^{-}$bromate
BrO_{4}^{-}perbromate

Cr-Based Ions

$$
\mathrm{CrO}_{4}{ }^{2-} \quad \text { chromate }
$$

$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ dichromate

I-Based lons
IO^{-}hypoiodite
$\mathrm{IO}_{2}{ }^{-} \quad$ iodite
$\mathrm{IO}_{3}{ }^{-} \quad$ iodate
$\mathrm{IO}_{4}{ }^{-}$periodate

P-Based Ions

$\mathrm{PO}_{3}{ }^{3-} \quad$ phosphite
$\mathrm{PO}_{4}{ }^{3-} \quad$ phosphate
$\mathrm{HPO}_{4}{ }^{2-} \quad$ hydrogen phosphate
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-} \quad$ dihydrogen phosphate

Other Ions

CN^{-}cyanide
$\mathrm{O}_{2}{ }^{2-} \quad$ peroxide
$\mathrm{MnO}_{4}{ }^{-} \quad$ permanganate

C-Based Ions
$\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{HCO}_{3}{ }^{-}$
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$or $\mathrm{CH}_{3} \mathrm{COO}^{-}$ $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-} \quad$ tartrate $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \quad$ oxalate

Cl-Based Ions
ClO^{-}
$\mathrm{ClO}_{2}{ }^{-}$
ClO_{3}^{-}
$\mathrm{ClO}_{4}{ }^{-}$

N -Based Ions

$\mathrm{NO}_{2}{ }^{-} \quad$ nitrite
$\mathrm{NO}_{3}{ }^{-}$nitrate
$\mathrm{NH}_{4}{ }^{+}$

S-Based Ions

$\mathrm{SO}_{3}{ }^{2-}$	sulfite
$\mathrm{SO}_{4}{ }^{2-}$	sulfate
$\mathrm{HSO}_{4}{ }^{-}$	hydrogen sulfate
$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$	thiosulfate

Acid \& Base Ions
$\begin{array}{cc}\mathrm{H}_{3} \mathrm{O}^{+} & \text {hydronium } \\ \mathrm{OH}^{-} & \text {hydroxide }\end{array}$
PERIODIC TABLE OF THE ELEMENTS

$\begin{gathered} 1 \\ \hline 108 \\ \hline 1008 \end{gathered}$																			
							$\begin{aligned} & -14 \\ & -\mathrm{Si} \end{aligned}$						${ }_{\substack{6 \\ \text { con } \\ \text { 1201 }}}^{\substack{\text { a }}}$	N 14.01 1.0	(¢ 0 10.00	$\underset{\substack{\text { F } \\ \text { 1900 }}}{\text { c }}$	\|l	l	
$\begin{aligned} & \text { Na } \\ & \text { N2299 } \end{aligned}$															$\begin{aligned} & 16 \\ & \begin{array}{l} 16206 \\ 3206 \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 17 \\ \hline \end{array}$			
	$\begin{array}{\|c} \substack{20 \\ \text { co } \\ \text { cose }} \end{array}$	$\begin{array}{\|c\|c\|} \hline 21 \\ \hline \text { se } \\ \hline 496 \end{array}$	$\begin{array}{\|l\|l\|} \hline \\ 4740 \end{array}$	$\begin{aligned} & { }_{c}^{23} \\ & 50.94 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \\ \text { crave } \end{array}$	$\begin{array}{\|c\|c} \hline 25 \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \end{array}$	$\begin{array}{\|l\|l} \hline \\ \hline \end{array}$			$\begin{aligned} & 30 \\ & \hline 639 \\ & \hline 639 \end{aligned}$		$\begin{aligned} & \text { Con } \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l} \hline 33 \\ 7492 \end{array}$		$\begin{array}{\|l\|l\|} \hline 85 \\ \hline \end{array}$			
								$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline \text { Rh } \\ \text { Rh } \end{array}$ 102.91	${ }^{10064}$ $\begin{aligned} & \text { mata } \\ & \hline \text { Pd } \end{aligned}$	$\underset{\substack{\mathrm{Ag} \\ 102728}}{ }$	${ }^{48}$	${ }_{114,82}^{\text {In }}$	sn	$\begin{gathered} 51 \\ \hline 12175 \\ \hline 12.50 \end{gathered}$			(
		.	${ }^{2784}$ Hf							$\xrightarrow{\text { Au }}$	$\underset{20059}{\mathrm{Hg}_{2}}$								
$\begin{gathered} \mathrm{Fr} \\ \substack{\mathrm{Fr} 23} \\ (2) \end{gathered}$	$\begin{gathered} \text { Ra } \\ \hline 226020 \end{gathered}$						$\left.\begin{array}{\|l\|l} 108 \\ (12575 \\ (127 \end{array}\right)$			$\begin{aligned} & \text { cial } \\ & \hline 101 \\ & \hline \mathrm{Rg} \end{aligned}$									

($\begin{array}{\|c\|c\|} \hline \end{array} \begin{gathered} \text { Pr } \\ \hline 140.9 \end{gathered}$	$\begin{aligned} & \hline 60 \\ & \text { Nd } \end{aligned}$	$\begin{gathered} 61 \\ \text { Pum } \\ \hline 1050 \end{gathered}$	$\begin{array}{\|c} 62 \\ \text { Sm } \\ 5.504 \end{array}$	$\begin{gathered} \text { cu } \\ \text { Eun } \\ \hline 509 \end{gathered}$	$\begin{array}{\|l\|} \hline 64 \\ \hline 6 \mathrm{da} \end{array}$	$\begin{gathered} 65 \\ \hline 159 \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { Dy } \\ \hline \end{array}$	$\begin{array}{\|c} \hline 67 \\ \text { Ho } \end{array}$		$\begin{gathered} \mathbf{6 9}^{\mathbf{T m}} \\ 168.93 \end{gathered}$		
	${ }_{\text {Pa }}$	$\stackrel{92}{0}$	Np	Pu	${ }^{\text {Am }}$	(${ }_{\text {Bk }}{ }^{\text {B7 }}$	cf	${ }_{\text {csem }}^{\text {ces }}$		cos	102 No	(1)
23204	231	23803	${ }^{(123)}$	$\xrightarrow{\text { 2 } 244}$	${ }^{1243}$		(24)		252]	${ }^{2557}$	(258)	(259)	212)

AP ${ }^{\circledR}$ CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

```
L,mL = liter(s), milliliter(s) mm Hg = millimeters of mercury
g = gram(s) J, kJ = joule(s), kilojoule(s)
nm = nanometer(s) V = volt(s)
atm = atmosphere(s) mol = mole(s)
```


ATOMIC STRUCTURE

$$
\begin{aligned}
& E=h v \\
& c=\lambda v
\end{aligned}
$$

$$
\begin{aligned}
& E=\text { energy } \\
& \nu=\text { frequency } \\
& \lambda=\text { wavelength }
\end{aligned}
$$

Planck's constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Avogadro's number $=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Electron charge, $e=-1.602 \times 10^{-19}$ coulomb

EQUILIBRIUM

$$
\begin{aligned}
K_{c} & =\frac{[\mathrm{C}]^{c}[\mathrm{D}]^{d}}{[\mathrm{~A}]^{a}[\mathrm{~B}]^{b}}, \text { where } a \mathrm{~A}+b \mathrm{~B} \rightleftarrows c \mathrm{C}+d \mathrm{D} \\
K_{p} & =\frac{\left(P_{\mathrm{C}}\right)^{c}\left(P_{\mathrm{D}}\right)^{d}}{\left(P_{\mathrm{A}}\right)^{a}\left(P_{\mathrm{B}}\right)^{b}} \\
K_{a} & =\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
K_{b} & =\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{HB}^{+}\right]}{[\mathrm{B}]} \\
K_{w} & =\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \text { at } 25^{\circ} \mathrm{C} \\
& =K_{a} \times K_{b} \\
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right], \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
14 & =\mathrm{pH}+\mathrm{pOH} \\
\mathrm{pH} & =\mathrm{p} K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\mathrm{p} K_{a} & =-\log K_{a}, \mathrm{p} K_{b}=-\log K_{b}
\end{aligned}
$$

Equilibrium Constants

K_{c} (molar concentrations)
K_{p} (gas pressures)
K_{a} (weak acid)
K_{b} (weak base)
K_{w} (water)

KINETICS

$$
\begin{aligned}
\ln [\mathrm{A}]_{t}-\ln [\mathrm{A}]_{0} & =-k t \\
\frac{1}{[\mathrm{~A}]_{t}}-\frac{1}{[\mathrm{~A}]_{0}} & =k t \\
t_{1 / 2} & =\frac{0.693}{k}
\end{aligned}
$$

$$
\begin{aligned}
k & =\text { rate constant } \\
t & =\text { time } \\
t_{1 / 2} & =\text { half-life }
\end{aligned}
$$

GASES, LIQUIDS, AND SOLUTIONS

$$
\begin{aligned}
P V & =n R T \\
P_{A} & =P_{\text {total }} \times X_{\mathrm{A}}, \text { where } X_{\mathrm{A}}=\frac{\text { moles A }}{\text { total moles }} \\
P_{\text {total }} & =P_{\mathrm{A}}+P_{\mathrm{B}}+P_{\mathrm{C}}+\ldots \\
n & =\frac{m}{M} \\
\mathrm{~K} & ={ }^{\circ} \mathrm{C}+273 \\
D & =\frac{m}{V}
\end{aligned}
$$

$K E$ per molecule $=\frac{1}{2} m v^{2}$
Molarity, $M=$ moles of solute per liter of solution

$$
A=a b c
$$

$P=$ pressure
$V=$ volume
$T=$ temperature
$n=$ number of moles
$m=$ mass
$\boldsymbol{M}=$ molar mass
$D=$ density
$K E=$ kinetic energy
$v=$ velocity
$A=$ absorbance
$a=$ molar absorptivity
$b=$ path length
$c=$ concentration
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ $=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ $=62.36 \mathrm{~L}^{\text {torr } \mathrm{mol}^{-1} \mathrm{~K}^{-1}}$
$1 \mathrm{~atm}=760 \mathrm{~mm} \mathrm{Hg}=760$ torr
STP $=273.15 \mathrm{~K}$ and 1.0 atm
Ideal gas at $\mathrm{STP}=22.4 \mathrm{~L} \mathrm{~mol}^{-1}$

THERMODYNAMICS / ELECTROCHEMISTRY

$$
\begin{aligned}
q & =m c \Delta T \\
\Delta S^{\circ} & =\sum S^{\circ} \text { products }-\sum S^{\circ} \text { reactants } \\
\Delta H^{\circ} & =\sum \Delta H_{f}^{\circ} \text { products }-\sum \Delta H_{f}^{\circ} \text { reactants } \\
\Delta G^{\circ} & =\sum \Delta G_{f}^{\circ} \text { products }-\sum \Delta G_{f}^{\circ} \text { reactants } \\
\Delta G^{\circ} & =\Delta H^{\circ}-T \Delta S^{\circ} \\
& =-R T \ln K \\
& =-n F E^{\circ} \\
I & =\frac{q}{t}
\end{aligned}
$$

$$
\begin{aligned}
q & =\text { heat } \\
m & =\text { mass } \\
c & =\text { specific heat capacity } \\
T & =\text { temperature } \\
S^{\circ} & =\text { standard entropy } \\
H^{\circ} & =\text { standard enthalpy } \\
G^{\circ} & =\text { standard Gibbs free energy } \\
n & =\text { number of moles } \\
E^{\circ} & =\text { standard reduction potential } \\
I & =\text { current (amperes) } \\
q & =\text { charge (coulombs) } \\
t & =\text { time (seconds) }
\end{aligned}
$$

Faraday's constant, $F=96,485$ coulombs per mole of electrons
1 volt $=\frac{1 \text { joule }}{1 \text { coulomb }}$
PERIODIC TABLE OF THE ELEMENTS

1																	18
H																	He
${ }_{\text {coid }}^{3}$	2												14	15	16	17	400
Li	Be											B	c	N	0	F	Ne
${ }_{694}^{11}$	${ }^{909}$											${ }^{1089}$	${ }_{1201}^{14}$	${ }^{1401}$	${ }_{1600}^{16}$	${ }^{1990} 17$	${ }^{2018}$
Na	Mg											Al	Si	P	s	Cl	Ar
$\frac{229}{19}$	${ }^{2730}$	${ }^{21}$	${ }^{22}$	${ }^{23}$	${ }^{24}$	${ }^{25}$	${ }^{26}$	${ }^{27}$	${ }^{28}$	${ }^{29}$	12	${ }^{2098}$	${ }^{32}$	${ }^{33}$	${ }^{34}$	${ }^{35}$	${ }^{36}$
K	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
${ }^{3910}$	4009	${ }_{\text {4，} 496}$	4790	${ }_{5094}$	${ }_{5200}$	$\frac{5494}{}$		${ }_{598}$		${ }_{635}$	${ }_{6359}$	6972		7992			${ }^{8380}$
Rb	Sr	y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
${ }^{8.547}$	${ }^{8762}$	${ }_{\text {8891 }}$	${ }^{1,12}$	${ }^{2921}$	${ }_{959}$	${ }_{\text {c19 }}$	10.10	1029	1064	${ }^{10897}$	${ }^{12.4}$	${ }^{14}$	887	${ }^{21,1}$	2760	${ }_{129}$	
Cs	Ba	${ }^{\text {＊}}$ a	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	${ }^{\frac{1737}{88}}$	${ }_{\text {13991 }}^{118}$	${ }^{\frac{17884}{104}}$	${ }_{\text {18095 }}^{105}$	${ }_{18385}$	${ }_{18621}^{1621}$	${ }^{1902}$		${ }_{15508}^{18}$								
Fr	Ra	\dagger †c	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							

	N
	N
$\left\|\begin{array}{lll} \boldsymbol{E} & 0 \\ 0 & \underset{[}{6} & 0 \\ 0 \end{array}\right\|$	$\underset{\sim}{2} \text { N }$
	읏 國
$\left\|\begin{array}{ccc} \hat{0} & 0 & 0 \\ \hline \end{array}\right\|$	の 또 N
$\left\|\begin{array}{lll} \circ & \underset{\sim}{\mathrm{N}} \end{array}\right\|$	\cdots～
$\left\|\begin{array}{lll} 1 & 0 & 0 \\ 0 & E & 0 \\ 0 \end{array}\right\|$	N
$\left.\begin{array}{lll} \hline & 0 & N \\ 0 & 5 & \hat{n} \end{array} \right\rvert\,$	\bigcirc 은
	$\mathfrak{l l l} \underset{\sim}{n} \text { B }$
$\left\|\right\|$	サ $\square^{\text {a }}$
	$\cdots \underset{\sim}{2} \underset{\sim}{0}$
	N \square ¢
$\left\|\begin{array}{lll} \mathfrak{n} & \dot{y} \\ \mathfrak{n} & \vdots \\ j \end{array}\right\|$	
∞	

＊Lanthanide Series

