UNITS 1 & 2 FREE RESPONSE REVIEW General Chemistry

1. [5 POINTS]

A sample of an unknown hydrocarbon was burned in air.

(a) When the hydrocarbon sample was burned in a reaction that went to completion, 2.2 grams of water and 3.6 liters of carbon dioxide were produced under standard conditions. What is the empirical formula of the hydrocarbon? [2 POINTS]

(b) If the molar mass of the compound was determined to be 28.1 g/mol, what is the molecular formula of the hydrocarbon? [2 POINTS]

(c) Write the balanced equation for the combustion reaction that took place in (a).[1 POINT]

UNIT 3 FREE RESPONSE REVIEW Electrochemistry

2. [9 POINTS]

A strip of Ni Metal is placed in a 1.0 M solution of $Ni(NO_3)_2$ and a strip of Ag metal is placed in a 1.0 M solution of AgNO₃. An electrochemical cell is created when the two solutions are connected by a salt bridge and the two metal strips are connected by wires to a voltmeter.

Standard Reduction Potentials at 25°C			
Reduction Half-Reaction	E°(V)		
$Au^{3+} + 3e^{-} \rightarrow Au(s)$	+ 1.50		
$Ag^+ + e^- \rightarrow Ag(s)$	+ 0.80		
$Ni^{2+} + 2e^- \rightarrow Ni(s)$	- 0.25		
$Na+ + e^{-} \rightarrow Na(s)$	- 2.71		

(a) Write the balanced chemical equation for the overall reaction that occurs in the cell, and calculate the cell potential, E°. [2 POINTS]

(b) Calculate how many grams of metal will be deposited on the cathode if the cell is allowed to run at constant current of 1.5 amperes for 8.00 minutes. [2 POINTS]

(c) Calculate the value of the standard free energy change, ΔG° , for the cell reaction. [2 POINTS]

UNIT 3 FREE RESPONSE REVIEW Electrochemistry

(d) Predict: will the cell potential, E_{cell}, at 25°C for the cell shown above be higher, lower, or equal to the standard cell potential E^o_{cell}, if the initial concentration of Ni(NO₃)₂ is 0.100 M and the initial concentration of AgNO₃ is 1.20 M. [2 POINTS]

(e) Is the reaction in the cell thermodynamically favorable under conditions described in part (d)? Justify your answer. [1 POINT]

UNIT 4 FREE RESPONSE REVIEW Thermochemistry and Thermodynamics

3. [8 POINTS]

 $CH_4(g) + 2O_2(g) - CO_2(g) + 2H_2O(I)$

The above reaction for the combustion of methane gas has a standard entropy change, ΔS° , with a value of 242.7 J/mol•K. The following data are also available.

Compound	ΔH°_{f} (kJ/mol)
CH₄(g)	-74.8
H₂O(I)	-285.9
CO ₂ (g)	-393.5

- (a) What are the values of ΔH°_{f} and ΔG°_{f} for $O_{2}(g)$? [1 POINT]
- (b) Calculate the standard change in enthalpy, ΔH° , for the combustion of methane. [2 POINTS]
- (c) Calculate the standard free energy change, ΔG° , for the combustion of methane. [2 POINTS]
- (d) How would the value of ΔS° for the reaction be affected if the water produced in the combustion remained in the gas phase? [1 POINT]
- (e) A 20.0 g sample of CH₄(g) underwent combustion in a bomb colorimeter with excess oxygen gas.
 - (i) Calculate the mass of carbon dioxide produced. [1 POINT]
 - (ii) Calculate the heat released by the reaction. [1 POINT]

UNIT 5 FREE RESPONSE REVIEW

Kinetics

4. [8 POINTS]

$A + 2B \rightarrow 2C$

The following results were obtained in experiments designed to study the rate of the reaction above:

Experiment	Initial [A] (mol/L)	Initial [B] (mol/L)	Initial rate of disappearance of A (M/sec)
1	0.05	0.05	3.0 x 10 ⁻³
2	0.05	0.10	6.0 x 10 ⁻³
3	0.10	0.10	1.2 x 10 ⁻²
4	0.20	0.10	2.4 x 10 ⁻²

(a) Determine the order of the reaction with respect to A. Justify your response. [1 POINT]

- (b) Determine the order of the reaction with respect to B. Justify your response. [1 POINT]
- (c) Write the rate law for the reaction. [1 POINT]
- (d) Calculate the value of the rate constant, k, for the reaction. Include the units. [2 POINTS]
- (e) If another experiment is attempted with [A] and [B], both 0.020-molar, what would be the initial rate of disappearance of A? [1 POINT]

UNIT 5 FREE RESPONSE REVIEW

Kinetics

(f) The following reaction mechanism was proposed for the reaction above:

$$A + B \rightarrow C + D$$
$$D + B \rightarrow C$$

- (i) Show the mechanism is consistent with the balanced reaction. [1 POINT]
- (ii) Show which step is the rate-determining step, and explain your choice. [1 POINT]
- (iii) In the mechanism, would D be classified as a catalyst or an intermediate? Justify your response. [1 POINT]