Thermochemistry/Thermodynamics Study Guide

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

Elements ARE zero for: ΔH° , ΔG° Elements are NOT zero for: S°

Nature favors:

- 1. $+\Delta S$ (increasing entropy, greater disorder)
- 2. $-\Delta H$ (exothermic, release of energy)
- <u>Driven by enthalpy</u>: a very exothermic reaction ($-\Delta H$) overcomes a decrease in entropy
- <u>Driven by entropy</u>: an endothermic reaction occurs spontaneously because of a highly <u>pಮೆಗೆಳಲ್ಲಿ</u> ΔS
- You can use the signs of ΔS and ΔH (together with the reaction $\Delta G = \Delta H T\Delta S$) to qualitatively predict the spontaneity of a given reaction. You can show this graphically, which leads to the best graph of all time (but SHHHH! It's a secret. (3))

$$(-,+)$$
 AS $(+,+)$ always AH $(-,-)$ $(+,-)$ $(+,-)$ $(+,-)$ $(+,-)$

E_{cell}^o	ΔG^o	K	K & Q Relationship	Reaction Direction	Spontaneity in the Forward Direction (as written)
+	_	K > 1	K > Q	Forward	thermodynamically favorable
_	+	K < 1	K < Q	Reverse	NOT thermodynamically favorable
= 0	= 0	K = 1	K = Q	No reaction	n/a

At standard conditions (1 M, 1 atm, 298 K):

$$\Delta G^o = -nFE^o_{cell}$$

n = number of moles of electrons transferred in a**BALANCED**redox reaction <math>F = faraday's constant = 96,485 C/ mol e⁻ (charge on one mole of electrons)

At standard conditions (1 M, 1 atm, 298 K):

$$\Delta G^o = -RT \ln K$$

$$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$$

For both reactions, the units for
$$\Delta G^o = \frac{\text{joules}}{\text{moles}_{\text{reaction}}} = \frac{\text{J}}{\text{mol}_{\text{rxn}}}$$

END-ing a bond (or IMF/attraction) is always END-othermic! ($+\Delta H$)